Ordonez-Miranda Jose, Ezzahri Younès, Joulain Karl
Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, Futuroscope Chasseneuil F-86962, France.
Phys Rev E. 2017 Feb;95(2-1):022128. doi: 10.1103/PhysRevE.95.022128. Epub 2017 Feb 22.
We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.
我们证明,两个相互作用的类自旋系统,其具有不同的激发频率且各自与一个热库耦合,可以用作能够有效整流热电流的量子热二极管。这是通过基于密度矩阵的主方程的解,推导出二极管的热电流和整流因子的解析表达式来实现的。对于较低的热电流可获得更高的整流因子,在与较热的热库温度成比例的给定相互作用耦合下,其大小取最大值。结果表明,当热库温度反转时,二极管的整流能力随激发频率差的增加而增强,激发频率差驱动热电流的不对称性。此外,还明确找到了优化整流因子和热电流的明确条件。