Suppr超能文献

Signal-3L 2.0:一种通过整合残基域跨层次特征来增强蛋白质信号肽预测的层次混合模型。

Signal-3L 2.0: A Hierarchical Mixture Model for Enhancing Protein Signal Peptide Prediction by Incorporating Residue-Domain Cross-Level Features.

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University , Shanghai, 200240, China.

Key Laboratory of System Control and Information Processing, Ministry of Education of China , Shanghai, 200240, China.

出版信息

J Chem Inf Model. 2017 Apr 24;57(4):988-999. doi: 10.1021/acs.jcim.6b00484. Epub 2017 Mar 30.

Abstract

Signal peptides play key roles in targeting and translocation of integral membrane proteins and secretory proteins. However, signal peptides present several challenges for automatic prediction methods. One challenge is that it is difficult to discriminate signal peptides from transmembrane helices, as both the H-region of the peptides and the transmembrane helices are hydrophobic. Another is that it is difficult to identify the cleavage site between signal peptides and mature proteins, as cleavage motifs or patterns are still unclear for most proteins. To solve these problems and further enhance automatic signal peptide recognition, we report a new Signal-3L 2.0 predictor. Our new model is constructed with a hierarchical protocol, where it first determines the existence of a signal peptide. For this, we propose a new residue-domain cross-level feature-driven approach, and we demonstrate that protein functional domain information is particularly useful for discriminating between the transmembrane helices and signal peptides as they perform different functions. Next, in order to accurately identify the unique signal peptide cleavage sites along the sequence, we designed a top-down approach where a subset of potential cleavage sites are screened using statistical learning rules, and then a final unique site is selected according to its evolution conservation score. Because this mixed approach utilizes both statistical learning and evolution analysis, it shows a strong capacity for recognizing cleavage sites. Signal-3L 2.0 has been benchmarked on multiple data sets, and the experimental results have demonstrated its accuracy. The online server is available at www.csbio.sjtu.edu.cn/bioinf/Signal-3L/ .

摘要

信号肽在靶向和转运整合膜蛋白和分泌蛋白方面发挥着关键作用。然而,信号肽给自动预测方法带来了一些挑战。其中一个挑战是,很难区分信号肽和跨膜螺旋,因为肽的 H 区和跨膜螺旋都是疏水性的。另一个挑战是,很难识别信号肽和成熟蛋白之间的切割位点,因为对于大多数蛋白质来说,切割模体或模式仍然不清楚。为了解决这些问题并进一步提高自动信号肽识别能力,我们报告了一种新的 Signal-3L 2.0 预测器。我们的新模型采用分层协议构建,首先确定信号肽的存在。为此,我们提出了一种新的残基-结构域交叉层次特征驱动方法,我们证明蛋白质功能结构域信息对于区分跨膜螺旋和信号肽特别有用,因为它们执行不同的功能。接下来,为了准确识别序列中独特的信号肽切割位点,我们设计了一种自顶向下的方法,使用统计学习规则筛选潜在的切割位点子集,然后根据其进化保守评分选择最终的独特位点。由于这种混合方法既利用了统计学习又利用了进化分析,因此它具有很强的识别切割位点的能力。Signal-3L 2.0 在多个数据集上进行了基准测试,实验结果证明了其准确性。在线服务器可在 www.csbio.sjtu.edu.cn/bioinf/Signal-3L/ 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验