Watkins P A, Kanaho Y, Moss J
Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, Bethesda, MD 20892.
Biochem J. 1987 Dec 15;248(3):749-54. doi: 10.1042/bj2480749.
The bacterial toxins, choleragen and pertussis toxin, inhibit the light-stimulated GTPase activity of bovine retinal rod outer segments by catalysing the ADP-ribosylation of the alpha-subunit (T alpha) of transducin [Abood, Hurley, Pappone, Bourne & Stryer (1982) J. Biol. Chem. 257, 10540-10543; Van Dop, Yamanaka, Steinberg, Sekura, Manclark, Stryer & Bourne (1984) J. Biol. Chem. 259, 23-26]. Incubation of retinal rod outer segments with NAD+ and a purified NAD+:arginine ADP-ribosyltransferase from turkey erythrocytes resulted in approx. 60% inhibition of GTPase activity. Inhibition was dependent on both enzyme and NAD+, and was potentiated by the non-hydrolysable GTP analogues guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5'-[beta gamma-methylene]triphosphate (p[CH2]ppG). The transferase ADP-ribosylated both the T alpha and T beta subunits of purified transducin. T alpha (39 kDa), after ADP-ribosylation, migrated as two distinct peptides with molecular masses of 42 kDa and 46 kDa on SDS/polyacrylamide-gel electrophoresis. T beta (36 kDa), after ADP-ribosylation, migrated as a 38 kDa peptide. With purified transducin subunits, it was observed that the GTPase activity of ADP-ribosylated T alpha, reconstituted with unmodified T beta gamma and photolysed rhodopsin, was decreased by 80%; conversely, reconstitution of T alpha with ADP-ribosyl-T beta gamma resulted in only a 19% inhibition of GTPase. Thus ADP-ribosylation of T alpha, the transducin subunit that contains the guanine nucleotide-binding site, has more dramatic effects on GTPase activity than does modification of the critical 'helper subunits' T beta gamma. To elucidate the mechanism of GTPase inhibition by transferase, we studied the effect of ADP-ribosylation on p[NH]pp[3H]G binding to transducin. It was shown previously that modification of transducin by choleragen, which like transferase ADP-ribosylates arginine residues, did not affect guanine nucleotide binding. ADP-ribosylation by the transferase, however, decreased p[NH]pp[3H]G binding, consistent with the hypothesis that choleragen and transferase inhibit GTPase by different mechanisms.
霍乱毒素和百日咳毒素等细菌毒素,通过催化转导素α亚基(Tα)的ADP核糖基化作用,抑制牛视网膜视杆细胞外段光刺激的GTP酶活性[阿布德、赫尔利、帕波内、伯恩和斯特里尔(1982年)《生物化学杂志》257卷,10540 - 10543页;范·多普、山中、斯坦伯格、塞库拉、曼克拉克、斯特里尔和伯恩(1984年)《生物化学杂志》259卷,23 - 26页]。将视网膜视杆细胞外段与NAD⁺以及从火鸡红细胞中纯化得到的NAD⁺:精氨酸ADP核糖基转移酶一起孵育,导致GTP酶活性约60%的抑制。抑制作用既依赖于酶也依赖于NAD⁺,并且不可水解的GTP类似物鸟苷5'-[βγ - 亚氨基]三磷酸(p[NH]ppG)和鸟苷5'-[βγ - 亚甲基]三磷酸(p[CH₂]ppG)可增强这种抑制作用。该转移酶使纯化的转导素的Tα和Tβ亚基都发生ADP核糖基化。ADP核糖基化后的Tα(39 kDa)在SDS/聚丙烯酰胺凝胶电泳上迁移为两条不同的肽链,分子量分别为42 kDa和46 kDa。ADP核糖基化后的Tβ(36 kDa)迁移为一条38 kDa的肽链。对于纯化的转导素亚基,观察到用未修饰的Tβγ和光解视紫红质重构的ADP核糖基化Tα的GTP酶活性降低了80%;相反,用ADP核糖基 - Tβγ重构Tα仅导致GTP酶活性19%的抑制。因此,含有鸟嘌呤核苷酸结合位点的转导素亚基Tα的ADP核糖基化对GTP酶活性的影响比关键的“辅助亚基”Tβγ的修饰更为显著。为了阐明转移酶抑制GTP酶的机制,我们研究了ADP核糖基化对p[NH]pp[³H]G与转导素结合的影响。先前已表明,与转移酶一样使精氨酸残基发生ADP核糖基化的霍乱毒素对转导素的修饰并不影响鸟嘌呤核苷酸结合。然而,转移酶的ADP核糖基化降低了p[NH]pp[³H]G的结合,这与霍乱毒素和转移酶通过不同机制抑制GTP酶的假设一致。