Twing Katrina I, Brazelton William J, Kubo Michael D Y, Hyer Alex J, Cardace Dawn, Hoehler Tori M, McCollom Tom M, Schrenk Matthew O
Department of Microbiology and Molecular Genetics, Michigan State University, East LansingMI, USA; Department of Biology, University of Utah, Salt Lake CityUT, USA.
Department of Biology, University of Utah, Salt Lake City UT, USA.
Front Microbiol. 2017 Mar 1;8:308. doi: 10.3389/fmicb.2017.00308. eCollection 2017.
Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H and CH) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.
蛇纹石化是一种广泛存在的地球化学过程,与超镁铁质岩石的水岩蚀变有关,该过程产生大量还原剂(H和CH)供生命利用,但同时也可能带来具有挑战性的条件,包括高pH值、末端电子受体可用性有限以及无机碳浓度低。因此,过去对蛇纹岩的研究报告称其细胞丰度低且微生物多样性有限。海岸山脉蛇绿岩微生物观测站(美国加利福尼亚州)的建立使得能够直接比较受蛇纹石化影响的地下含水层中的微生物群落和物理化学参数。从七口井采集的样本进行了一系列分析,包括溶质和气体化学分析、通过16S rRNA基因测序分析微生物多样性以及通过鸟枪法宏基因组学分析代谢潜力,旨在阐明哪些因素驱动蛇纹岩栖息地中的微生物活动。本研究描述了首次对通过钻孔直接进入蛇纹岩岩石的高碱性地下水中的微生物群落进行的全面跨学科分析。包括pH值、甲烷和一氧化碳在内的几个环境因素与主要的地下微生物群落密切相关。β-变形菌纲的一个单一操作分类单元(OTU)和梭菌纲的几个OTU几乎是表现出最强烈蛇纹石化特征的流体中的唯一居住者。这些极端样本的宏基因组包含大量编码与氢代谢、一氧化碳氧化、碳固定和产乙酸相关蛋白质的序列。特别是,梭菌纲和β-变形菌纲编码的代谢途径可能在蛇纹石化地下水生态系统中发挥重要作用。这些数据为进一步开展蛇纹岩地下环境关键过程的生物地球化学研究提供了基础。