Suppr超能文献

溶液结构对气相中溶菌酶离子折叠的影响。

Effects of Solution Structure on the Folding of Lysozyme Ions in the Gas Phase.

作者信息

Laszlo Kenneth J, Munger Eleanor B, Bush Matthew F

机构信息

Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States.

出版信息

J Phys Chem B. 2017 Apr 6;121(13):2759-2766. doi: 10.1021/acs.jpcb.7b00783. Epub 2017 Mar 24.

Abstract

The fidelity between the structures of proteins in solution and protein ions in the gas phase is critical to experiments that use gas-phase measurements to infer structures in solution. Here we generate ions of lysozyme, a 129-residue protein whose native tertiary structure contains four internal disulfide bonds, from three solutions that preserve varying extents of the original native structure. We then use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of those ions in the gas phase and ion mobility to probe their structures. The collision cross section (Ω) distributions of each CAPTR product depends to varying extents on the original solution, the charge state of the product, and the charge state of the precursor. For example, the Ω distributions of the 6+ ions depend strongly on the original solutions conditions and to a lesser extent on the charge state of the precursor. Energy-dependent experiments suggest that very different structures are accessible to disulfide-reduced and disulfide-intact ions, but similar Ω distributions are formed at high energy for disulfide-intact ions from denaturing and from aqueous conditions. The Ω distributions of the 3+ ions are all similar but exhibit subtle differences that depend more strongly on the original solutions conditions than other factors. More generally, these results suggest that specific CAPTR products may be especially sensitive to specific elements of structure in solution.

摘要

溶液中蛋白质结构与气相中蛋白质离子结构之间的保真度对于利用气相测量推断溶液中结构的实验至关重要。在此,我们从三种不同程度保留原始天然结构的溶液中生成了溶菌酶离子,溶菌酶是一种含有129个残基的蛋白质,其天然三级结构包含四个内部二硫键。然后,我们使用阳离子到阴离子的质子转移反应(CAPTR)在气相中降低这些离子的电荷态,并利用离子迁移率来探测它们的结构。每个CAPTR产物的碰撞截面(Ω)分布在不同程度上取决于原始溶液、产物的电荷态以及前体的电荷态。例如,6+离子的Ω分布强烈依赖于原始溶液条件,而对前体电荷态的依赖程度较小。能量相关实验表明,二硫键还原和二硫键完整的离子可形成非常不同的结构,但对于来自变性条件和水性条件的二硫键完整离子,在高能下会形成相似的Ω分布。3+离子的Ω分布都相似,但表现出细微差异,这些差异比其他因素更强烈地依赖于原始溶液条件。更普遍地说,这些结果表明特定的CAPTR产物可能对溶液中特定的结构元素特别敏感。

相似文献

1
Effects of Solution Structure on the Folding of Lysozyme Ions in the Gas Phase.
J Phys Chem B. 2017 Apr 6;121(13):2759-2766. doi: 10.1021/acs.jpcb.7b00783. Epub 2017 Mar 24.
3
Folding of Protein Ions in the Gas Phase after Cation-to-Anion Proton-Transfer Reactions.
J Am Chem Soc. 2016 Aug 3;138(30):9581-8. doi: 10.1021/jacs.6b04282. Epub 2016 Jul 21.
4
Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections.
J Am Soc Mass Spectrom. 2017 Jul;28(7):1382-1391. doi: 10.1007/s13361-017-1620-4. Epub 2017 Feb 21.
5
6
Interpreting the Collision Cross Sections of Native-like Protein Ions: Insights from Cation-to-Anion Proton-Transfer Reactions.
Anal Chem. 2017 Jul 18;89(14):7607-7614. doi: 10.1021/acs.analchem.7b01474. Epub 2017 Jul 7.
7
Conformations and folding of lysozyme ions in vacuo.
Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3143-8. doi: 10.1073/pnas.93.7.3143.
8
Effects of charge on protein ion structure: Lessons from cation-to-anion, proton-transfer reactions.
Mass Spectrom Rev. 2024 May-Jun;43(3):500-525. doi: 10.1002/mas.21847. Epub 2023 May 2.
9
Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.
Phys Chem Chem Phys. 2011 Dec 28;13(48):21630-41. doi: 10.1039/c1cp22127b. Epub 2011 Nov 10.
10
Conformations of disulfide-intact and -reduced lysozyme ions probed by proton-transfer reactions at various temperatures.
J Phys Chem B. 2014 Aug 14;118(32):9651-61. doi: 10.1021/jp505621f. Epub 2014 Jul 31.

引用本文的文献

1
Protein Unfolding in Freeze Frames: Intermediate States are Revealed by Variable-Temperature Ion Mobility-Mass Spectrometry.
Anal Chem. 2022 Sep 6;94(35):12248-12255. doi: 10.1021/acs.analchem.2c03066. Epub 2022 Aug 24.
2
High-Precision, Gas-Phase Hydrogen/Deuterium-Exchange Kinetics by Mass Spectrometry Enabled by Exchange Standards.
Anal Chem. 2020 Jun 2;92(11):7725-7732. doi: 10.1021/acs.analchem.0c00749. Epub 2020 May 18.
3
Collision cross-section analysis of self-assembled metallomacrocycle isomers and isobars via ion mobility mass spectrometry.
Rapid Commun Mass Spectrom. 2020 Aug;34 Suppl 2(Suppl 2):e8717. doi: 10.1002/rcm.8717. Epub 2020 Feb 8.
4
Recent Developments in Gas-Phase Ion/Ion Reactions for Analytical Mass Spectrometry.
Anal Chem. 2020 Jan 7;92(1):252-266. doi: 10.1021/acs.analchem.9b05014. Epub 2019 Nov 26.
5
Recommendations for reporting ion mobility Mass Spectrometry measurements.
Mass Spectrom Rev. 2019 May;38(3):291-320. doi: 10.1002/mas.21585. Epub 2019 Feb 1.
6
Interpreting the Collision Cross Sections of Native-like Protein Ions: Insights from Cation-to-Anion Proton-Transfer Reactions.
Anal Chem. 2017 Jul 18;89(14):7607-7614. doi: 10.1021/acs.analchem.7b01474. Epub 2017 Jul 7.

本文引用的文献

1
Native Mass Spectrometry: What is in the Name?
J Am Soc Mass Spectrom. 2017 Jan 1;28(1):5-13. doi: 10.1021/jasms.8b05378.
2
Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections.
J Am Soc Mass Spectrom. 2017 Jul;28(7):1382-1391. doi: 10.1007/s13361-017-1620-4. Epub 2017 Feb 21.
3
Retention of Native Protein Structures in the Absence of Solvent: A Coupled Ion Mobility and Spectroscopic Study.
Angew Chem Int Ed Engl. 2016 Nov 2;55(45):14173-14176. doi: 10.1002/anie.201606029. Epub 2016 Aug 22.
4
Conformational Space and Stability of ETD Charge Reduction Products of Ubiquitin.
J Am Soc Mass Spectrom. 2017 Jan;28(1):69-76. doi: 10.1007/s13361-016-1444-7. Epub 2016 Aug 5.
5
Folding of Protein Ions in the Gas Phase after Cation-to-Anion Proton-Transfer Reactions.
J Am Chem Soc. 2016 Aug 3;138(30):9581-8. doi: 10.1021/jacs.6b04282. Epub 2016 Jul 21.
6
Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.
Acc Chem Res. 2016 Jul 19;49(7):1421-8. doi: 10.1021/acs.accounts.6b00177. Epub 2016 Jun 23.
7
Cationic Noncovalent Interactions: Energetics and Periodic Trends.
Chem Rev. 2016 May 11;116(9):5642-87. doi: 10.1021/acs.chemrev.5b00688. Epub 2016 Mar 8.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验