Schauermann Jürgen
Abt. Ökologie, II. Zoologisches Institut und Museum der Universität Göttingen, Göttingen, Bundesrepublik Deutschland.
Oecologia. 1973 Dec;13(4):313-350. doi: 10.1007/BF01825524.
The energy turnover of weevil populations ofPhyllobius argentatus L.,Polydrosus undatus F., andStrophosomus sp. was investigated in a 123 years old (1970) beech forest in special consideration of their soil-living rhizophagous larvae (results of the energy turnover ofStrophosomus sp. imagines, see Grimm, 1973). I. Life-Cycle. P. argentatus with five larval stages develops in one year. The imago lives for about 30 days in the stand layer (May to August). During 12 to 15 monthsStrophosomus sp. has four larval stages. The imago lives from September onward for 9\2-12 months (see Grimm, 1973). The four larvae ofP. undatus develop in a space of 18 months. The imago leaves the soil after a 7 or 8 month lasting stay and lives in the stand layer for 45 days (April to July).Strophosomus sp. andP. undatus hibernate as larval stage 4 (1. way of development) or as stage 3 (2. way of development). II. Abundance. Abundance of larvae and pupae were determined by square samples and direct sorting. In the case ofP. undatus andP. argentatus the numbers of beetles emerging were determined by means of eclector catches (emergence traps). Shaking samples yielded data about abundance of weevils in crown layer. The period of activity of weevils on the stems was determined with arboreal photoeclectors. III. Bioenergetic Results. The investigations of energy turnover produced the following results: 1. Average individual 2. Populations The weevil populations 1969-1970 (71) assimilated:20,161 · 10kcal/ha (P. argentatus), 10,703 · 10 kcal/ha (Strophosomus sp., 1. and 2. way of development), and 3,865 · 10 kcal/ha (P. undatus, 1. and 2. way of development), till the end of the pupal stage. Until death of imagines the populations assimilated 21,129 · 10kcal/ha (P. argentatus) and 4,009 · 10 kcal/ha (P. undatus). 3. Production of imagines (biomass of imagines emerging from soil) The production of imagines (mean 1968-1972,B ) amounted to about 8,118 · 10 kcal/ha·yr (P. argentatus) and about 0,997·10 kcal/ha·yr (P. undatus). 5 to 10 photo-eclectors were found to be the optimal number for determining the production of imagines. 4. Flux of energy from roots of beech to populations of rhizophagous weevils was discussed.
对银叶象甲(Phyllobius argentatus L.)、云杉八齿小蠹(Polydrosus undatus F.)和某斯特罗福象属(Strophosomus sp.)象甲种群的能量周转进行了研究,研究地点为一片树龄123年(1970年)的山毛榉林,特别关注其生活在土壤中的食根幼虫(某斯特罗福象属成虫的能量周转结果,见格林,1973年)。一、生命周期。银叶象甲有五个幼虫阶段,一年发育成熟。成虫在林冠层生活约30天(5月至8月)。某斯特罗福象属有四个幼虫阶段,历时12至15个月。成虫从9月起存活9.5至12个月(见格林,1973年)。云杉八齿小蠹的四个幼虫在18个月内发育完成。成虫在土壤中停留7或8个月后离开土壤,在林冠层生活45天(4月至7月)。某斯特罗福象属和云杉八齿小蠹以4龄幼虫(第一种发育方式)或3龄幼虫(第二种发育方式)越冬。二、丰度。通过方形样本和直接分拣确定幼虫和蛹的丰度。对于云杉八齿小蠹和银叶象甲,通过诱捕器(羽化陷阱)确定羽化甲虫的数量。摇晃样本得出林冠层象甲丰度的数据。用树木光电诱捕器确定象甲在树干上的活动时期。三、生物能量学结果。能量周转研究得出以下结果:1. 平均个体……2. 种群1969 - 1970年(71)象甲种群同化量:20,161×10千卡/公顷(银叶象甲),10,703×10千卡/公顷(某斯特罗福象属,第一种和第二种发育方式),以及3,865×10千卡/公顷(云杉八齿小蠹,第一种和第二种发育方式),直至蛹期结束。直到成虫死亡,种群同化量为21,129×10千卡/公顷(银叶象甲)和4,009×10千卡/公顷(云杉八齿小蠹)。3. 成虫产量(从土壤中羽化出的成虫生物量)成虫产量(1968 - 1972年平均值,B)约为8,118×10千卡/公顷·年(银叶象甲)和约0,997×10千卡/公顷·年(云杉八齿小蠹)。发现5至10个光电诱捕器是确定成虫产量的最佳数量。4. 讨论了从山毛榉根到食根象甲种群的能量流动。