Suppr超能文献

连续努力的序贯攻防博弈中的威慑与风险偏好

Deterrence and Risk Preferences in Sequential Attacker-Defender Games with Continuous Efforts.

机构信息

Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.

McDonough School of Business, Georgetown University, Washington, DC, USA.

出版信息

Risk Anal. 2017 Nov;37(11):2229-2245. doi: 10.1111/risa.12768. Epub 2017 Mar 17.

Abstract

Most attacker-defender games consider players as risk neutral, whereas in reality attackers and defenders may be risk seeking or risk averse. This article studies the impact of players' risk preferences on their equilibrium behavior and its effect on the notion of deterrence. In particular, we study the effects of risk preferences in a single-period, sequential game where a defender has a continuous range of investment levels that could be strategically chosen to potentially deter an attack. This article presents analytic results related to the effect of attacker and defender risk preferences on the optimal defense effort level and their impact on the deterrence level. Numerical illustrations and some discussion of the effect of risk preferences on deterrence and the utility of using such a model are provided, as well as sensitivity analysis of continuous attack investment levels and uncertainty in the defender's beliefs about the attacker's risk preference. A key contribution of this article is the identification of specific scenarios in which the defender using a model that takes into account risk preferences would be better off than a defender using a traditional risk-neutral model. This study provides insights that could be used by policy analysts and decisionmakers involved in investment decisions in security and safety.

摘要

大多数攻击者-防御者博弈将参与者视为风险中性,但实际上攻击者和防御者可能是风险寻求者或风险厌恶者。本文研究了参与者风险偏好对其均衡行为的影响及其对威慑概念的影响。具体来说,我们研究了在一个单期、顺序博弈中,防御者有一系列连续的投资水平,可以通过战略选择来潜在地阻止攻击的情况下,风险偏好的影响。本文提出了与攻击者和防御者风险偏好对最优防御努力水平的影响及其对威慑水平的影响有关的分析结果。还提供了风险偏好对威慑和使用此类模型的效用的影响的数值说明和一些讨论,以及对连续攻击投资水平和防御者对攻击者风险偏好信念不确定性的敏感性分析。本文的一个主要贡献是确定了在哪些特定情况下,考虑风险偏好的防御者使用模型会比使用传统风险中性模型的防御者更有利。这项研究为参与安全和保障投资决策的政策分析师和决策者提供了有用的见解。

相似文献

1
Deterrence and Risk Preferences in Sequential Attacker-Defender Games with Continuous Efforts.
Risk Anal. 2017 Nov;37(11):2229-2245. doi: 10.1111/risa.12768. Epub 2017 Mar 17.
2
Defender-Attacker Games with Asymmetric Player Utilities.
Risk Anal. 2020 Feb;40(2):408-420. doi: 10.1111/risa.13399. Epub 2019 Sep 17.
3
Modeling Resources Allocation in Attacker-Defender Games with "Warm Up" CSF.
Risk Anal. 2016 Apr;36(4):776-91. doi: 10.1111/risa.12502. Epub 2015 Dec 29.
4
Security under Uncertainty: Adaptive Attackers Are More Challenging to Human Defenders than Random Attackers.
Front Psychol. 2017 Jun 22;8:982. doi: 10.3389/fpsyg.2017.00982. eCollection 2017.
5
Choosing what to protect.
Risk Anal. 2007 Jun;27(3):607-20. doi: 10.1111/j.1539-6924.2007.00906.x.
6
Defender-Attacker Decision Tree Analysis to Combat Terrorism.
Risk Anal. 2016 Dec;36(12):2258-2271. doi: 10.1111/risa.12574. Epub 2016 Apr 1.
7
Robust allocation of a defensive budget considering an attacker's private information.
Risk Anal. 2012 May;32(5):930-43. doi: 10.1111/j.1539-6924.2011.01702.x. Epub 2011 Nov 2.
8
A Study on a Sequential One-Defender-N-Attacker Game.
Risk Anal. 2019 Jun;39(6):1414-1432. doi: 10.1111/risa.13257. Epub 2019 Jan 2.
9
Attacker Deterrence and Perceived Risk in a Stackelberg Security Game.
Risk Anal. 2016 Aug;36(8):1666-81. doi: 10.1111/risa.12547. Epub 2016 Feb 17.
10
An Attacker-defender Resource Allocation Game with Substitution and Complementary Effects.
Risk Anal. 2020 Jul;40(7):1481-1506. doi: 10.1111/risa.13483. Epub 2020 May 19.

引用本文的文献

1
A Framework for Estimating the Value of Deterrence.
Int Top Meet Probab Saf Assess Anal PSA 2019 Charlest SC April 28 May 3 2019 (2019). 2022;16:1-10.
2
A review of attacker-defender games: Current state and paths forward.
Eur J Oper Res. 2024 Mar;313(2):401-417. doi: 10.1016/j.ejor.2023.04.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验