Sun Shuang, Chen Bo, Jin Zi-Jing, Zhou Lian, Fang Yun-Ling, Thawai Chitti, Rampioni Giordano, He Ya-Wen
State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
Mol Microbiol. 2017 Jun;104(6):931-947. doi: 10.1111/mmi.13671. Epub 2017 Apr 4.
Phenazines are important secondary metabolites that have been found to affect a broad spectrum of organisms. Two almost identical gene clusters phz1 and phz2 are responsible for phenazines biosynthesis in the rhizobacterium Pseudomonas aeruginosa PA1201. Here, we show that the transcriptional regulator RsaL is a potent repressor of phenazine-1-carboxylic acid (PCA) biosynthesis. RsaL negatively regulates phz1 expression and positively regulates phz2 expression via multiple mechanisms. First, RsaL binds to a 25-bp DNA region within the phz1 promoter to directly repress phz1 expression. Second, RsaL indirectly regulates the expression of both phz clusters by decreasing the activity of the las and pqs quorum sensing (QS) systems, and by promoting the rhl QS system. Finally, RsaL represses phz1 expression through the downstream transcriptional regulator CdpR. RsaL directly binds to the promoter region of cdpR to positively regulate its expression, and subsequently CdpR regulates phz1 expression in a negative manner. We also show that RsaL represents a new mechanism for the turnover of the QS signal molecule N-3-oxododecanoyl-homoserine lactone (3-oxo-C12-HSL). Overall, this study elucidates RsaL control of phenazines biosynthesis and indicates that a PA1201 strain harboring deletions in both the rsaL and cdpR genes could be used to improve the industrial production of PCA.
吩嗪是重要的次生代谢产物,已发现其会影响广泛的生物体。两个几乎相同的基因簇phz1和phz2负责铜绿假单胞菌PA1201中吩嗪的生物合成。在此,我们表明转录调节因子RsaL是吩嗪 - 1 - 羧酸(PCA)生物合成的有效阻遏物。RsaL通过多种机制对phz1表达进行负调控,并对phz2表达进行正调控。首先,RsaL与phz1启动子内一个25bp的DNA区域结合,直接抑制phz1表达。其次,RsaL通过降低las和pqs群体感应(QS)系统的活性以及促进rhl QS系统,间接调节两个phz基因簇的表达。最后,RsaL通过下游转录调节因子CdpR抑制phz1表达。RsaL直接与cdpR的启动子区域结合,以正调控其表达,随后CdpR以负向方式调节phz1表达。我们还表明,RsaL代表了群体感应信号分子N - 3 - 氧代十二烷酰 - 高丝氨酸内酯(3 - 氧代 - C12 - HSL)周转的一种新机制。总体而言,本研究阐明了RsaL对吩嗪生物合成的控制,并表明同时缺失rsaL和cdpR基因的PA1201菌株可用于提高PCA的工业产量。