Suppr超能文献

简便合成纳米多孔LiVO@C复合材料作为锂离子电池有前景的负极材料。

Facile synthesis of nanoporous LiVO@C composites as promising anode materials for lithium-ion batteries.

作者信息

Mei Peng, Pramanik Malay, Lee Jaewoo, Takei Toshiaki, Ide Yusuke, Hossain Md Shahriar A, Kim Jung Ho, Yamauchi Yusuke

机构信息

International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.

出版信息

Phys Chem Chem Phys. 2017 Mar 29;19(13):9156-9163. doi: 10.1039/c6cp08827a.

Abstract

Recently, a layered material with composition LiVO has been discovered as a promising alternative anode material to graphite due to its high volumetric capacity and low operation potential. Herein, we demonstrate a mild and cost-effective synthetic methodology to construct a novel nanoporous anode material (P-LVO@C), comprising LiVO nanocrystals embedded in a porous carbon matrix. The thermal decomposition of organic materials, including a triblock copolymer (P123) and citric acid, in a N atmosphere is the source of the nanoporous carbon in the porous composite material, while citric acid also plays a crucial role in maintaining the reductive environment of the synthetic medium. Due to the novel composition of LiVO (x ≥ 0.03), as well as its porous structure and well-integrated conductive framework, our P-LVO@C has great applicability as a high performance anode material for lithium-ion batteries. Our P-LVO@C composite electrode shows high reversible capacity with an excellent cycling performance (100 cycles) and good capacity retention (82%) at a higher rate (0.48C).

摘要

最近,一种组成为LiVO的层状材料因其高体积容量和低工作电位,被发现是一种很有前景的替代石墨的负极材料。在此,我们展示了一种温和且经济高效的合成方法,用于构建一种新型的纳米多孔负极材料(P-LVO@C),它由嵌入多孔碳基质中的LiVO纳米晶体组成。在N气氛中,包括三嵌段共聚物(P123)和柠檬酸在内的有机材料的热分解是多孔复合材料中纳米多孔碳的来源,而柠檬酸在维持合成介质的还原环境方面也起着关键作用。由于LiVO(x≥0.03)的新颖组成,以及其多孔结构和良好整合的导电框架,我们的P-LVO@C作为锂离子电池的高性能负极材料具有很大的适用性。我们的P-LVO@C复合电极显示出高可逆容量,具有出色的循环性能(100次循环),并且在较高倍率(0.48C)下具有良好的容量保持率(82%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验