Bahrami Mozhgan, Zhang Xingwen, Ehsani Morteza, Jahani Yousef, Laine Richard M
Macromolecular Science and Engineering, and Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA.
Dalton Trans. 2017 Jul 11;46(27):8797-8808. doi: 10.1039/c7dt00373k.
Traditional electrophilic bromination follows long established "rules": electron-withdrawing substituents cause bromination selective for meta positions, whereas electron-donating substituents favor ortho and para bromination. In contrast, in the [PhSiO] silsesquioxanes, the cages act as bulky, electron withdrawing groups equivalent to CF; yet bromination under mild conditions, without a catalyst, greatly favors ortho substitution. Surprisingly, ICl iodination without a catalyst favors (>90%) para substitution [p-ICHSiO]. Finally, nitration and Friedel-Crafts acylation and sulfonylation are highly meta selective, >80%. In principle, the two halogenation formats coupled with the traditional electrophilic reactions provide selective functionalization at each position on the aromatic ring. Furthermore, halogenation serves as a starting point for the synthesis of two structural isomers of practical utility, i.e. in drug prospecting. The o-bromo and p-iodo compounds are easily modified by catalytic cross-coupling to append diverse functional groups. Thereafter, F/HO treatment cleaves the Si-C bonds replacing Si with OH. This represents a rare opportunity to introduce hydroxyl groups to aromatic rings, a process not easily accomplished using traditional organic synthesis methods. The as-produced phenol provides additional opportunities for modification. Each cage can be considered a nanoreactor generating 8-12 product molecules. Examples given include syntheses of 4,2'-R,OH-stilbenes and 4,4'-R,OH-stilbenes (R = Me, CN). Unoptimized cleavage of the Br/I derivatives yields 55-85% phenol. Unoptimized cleavage of the stilbene derivatives yields 35-40% (3-5 equivalents of phenol) in the preliminary studies presented here. In contrast, meta R-phenol yields are 80% (7-10 mol per cage).
传统的亲电溴化反应遵循早已确立的“规则”:吸电子取代基会使溴化反应选择性地发生在间位,而供电子取代基则有利于邻位和对位溴化。相比之下,在[PhSiO]倍半硅氧烷中,笼状结构起到了类似于CF的庞大吸电子基团的作用;然而,在无催化剂的温和条件下进行溴化时,却极大地有利于邻位取代。令人惊讶的是,无催化剂的ICl碘化反应有利于(>90%)对位取代[p-ICHSiO]。最后,硝化、傅克酰基化和磺酰化反应具有很高的间位选择性,>80%。原则上,这两种卤化形式与传统的亲电反应相结合,可在芳香环的每个位置实现选择性官能化。此外,卤化反应是合成两种具有实际用途的结构异构体的起点,即在药物勘探中。邻溴和对碘化合物可通过催化交叉偶联轻松进行修饰,以连接各种官能团。此后,F/HO处理会切断Si-C键,用OH取代Si。这代表了一个将羟基引入芳香环的难得机会,而这一过程使用传统有机合成方法并不容易实现。生成的苯酚提供了更多的修饰机会。每个笼状结构可被视为一个能生成8 - 12个产物分子的纳米反应器。给出的例子包括4,2'-R,OH-二苯乙烯和4,4'-R,OH-二苯乙烯(R = Me, CN)的合成。在此处展示的初步研究中,未优化的Br/I衍生物裂解可得到55 - 85%的苯酚。未优化的二苯乙烯衍生物裂解在初步研究中可得到35 - 40%(3 - 5当量的苯酚)。相比之下,间位R-苯酚的产率为80%(每个笼状结构7 - 10摩尔)。