Suppr超能文献

人组氨酰 - tRNA合成酶的两种同工型对高度分化的tRNA特异性的进化性获得。

Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase.

作者信息

Lee Yi-Hsueh, Chang Chia-Pei, Cheng Yu-Ju, Kuo Yi-Yi, Lin Yeong-Shin, Wang Chien-Chia

机构信息

Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan.

Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30068, Taiwan.

出版信息

Cell Mol Life Sci. 2017 Jul;74(14):2663-2677. doi: 10.1007/s00018-017-2491-3. Epub 2017 Mar 20.

Abstract

The discriminator base N73 is a key identity element of tRNA. In eukaryotes, N73 is an "A" in cytoplasmic tRNA and a "C" in mitochondrial tRNA. We present evidence herein that yeast histidyl-tRNA synthetase (HisRS) recognizes both A73 and C73, but somewhat prefers A73 even within the context of mitochondrial tRNA. In contrast, humans possess two distinct yet closely related HisRS homologues, with one encoding the cytoplasmic form (with an extra N-terminal WHEP domain) and the other encoding its mitochondrial counterpart (with an extra N-terminal mitochondrial targeting signal). Despite these two isoforms sharing high sequence similarities (81% identity), they strongly preferred different discriminator bases (A73 or C73). Moreover, only the mitochondrial form recognized the anticodon as a strong identity element. Most intriguingly, swapping the discriminator base between the cytoplasmic and mitochondrial tRNA isoacceptors conveniently switched their enzyme preferences. Similarly, swapping seven residues in the active site between the two isoforms readily switched their N73 preferences. This study suggests that the human HisRS genes, while descending from a common ancestor with dual function for both types of tRNA, have acquired highly specialized tRNA recognition properties through evolution.

摘要

鉴别碱基N73是tRNA的关键识别元件。在真核生物中,N73在细胞质tRNA中为“A”,而在线粒体tRNA中为“C”。我们在此提供证据表明,酵母组氨酰-tRNA合成酶(HisRS)能够识别A73和C73,但即使在线粒体tRNA的背景下,也略微偏好A73。相比之下,人类有两种不同但密切相关的HisRS同源物,一种编码细胞质形式(带有额外的N端WHEP结构域),另一种编码其线粒体对应物(带有额外的N端线粒体靶向信号)。尽管这两种同工型具有高度的序列相似性(81%的同一性),但它们强烈偏好不同的鉴别碱基(A73或C73)。此外,只有线粒体形式将反密码子识别为强识别元件。最有趣的是,在细胞质和线粒体tRNA同工受体之间交换鉴别碱基可以方便地切换它们对酶的偏好。同样,在两种同工型的活性位点交换七个残基也很容易切换它们对N73的偏好。这项研究表明,人类HisRS基因虽然起源于对两种类型tRNA都具有双重功能的共同祖先,但通过进化获得了高度专业化的tRNA识别特性。

相似文献

1
Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase.
Cell Mol Life Sci. 2017 Jul;74(14):2663-2677. doi: 10.1007/s00018-017-2491-3. Epub 2017 Mar 20.
3
Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair.
Nucleic Acids Res. 2011 Mar;39(6):2286-93. doi: 10.1093/nar/gkq1176. Epub 2010 Nov 17.
6
Naturally occurring dual recognition of tRNA substrates with and without a universal identity element.
RNA Biol. 2019 Sep;16(9):1275-1285. doi: 10.1080/15476286.2019.1626663. Epub 2019 Jun 16.
7
Recognition of G-1:C73 atomic groups by Escherichia coli histidyl-tRNA synthetase.
J Am Chem Soc. 2004 Jan 14;126(1):64-5. doi: 10.1021/ja0381609.
9
Strategy for RNA recognition by yeast histidyl-tRNA synthetase.
Bioorg Med Chem. 1997 Jun;5(6):1001-9. doi: 10.1016/s0968-0896(97)00061-8.
10
Histidyl-tRNA synthetase.
Biol Chem. 1999 Jun;380(6):623-46. doi: 10.1515/BC.1999.079.

引用本文的文献

2
Adaptation of a eukaryote-like ProRS to a prokaryote-like tRNAPro.
Nucleic Acids Res. 2024 Jul 8;52(12):7158-7170. doi: 10.1093/nar/gkae483.
3
Adaptive evolution: Eukaryotic enzyme's specificity shift to a bacterial substrate.
Protein Sci. 2024 Jun;33(6):e5028. doi: 10.1002/pro.5028.
5
Recognition of tRNA in an RNase P-Free Nanoarchaeum.
Microbiol Spectr. 2023 Feb 22;11(2):e0462122. doi: 10.1128/spectrum.04621-22.
6
Human Thg1 displays tRNA-inducible GTPase activity.
Nucleic Acids Res. 2022 Sep 23;50(17):10015-10025. doi: 10.1093/nar/gkac768.
7
Analysis of GTP addition in the reverse (3'-5') direction by human tRNA guanylyltransferase.
RNA. 2021 Jun;27(6):665-675. doi: 10.1261/rna.078287.120. Epub 2021 Mar 23.
8
Recurrent sequence evolution after independent gene duplication.
BMC Evol Biol. 2020 Aug 8;20(1):98. doi: 10.1186/s12862-020-01660-1.
9
Naturally occurring dual recognition of tRNA substrates with and without a universal identity element.
RNA Biol. 2019 Sep;16(9):1275-1285. doi: 10.1080/15476286.2019.1626663. Epub 2019 Jun 16.
10
Substrate interaction defects in histidyl-tRNA synthetase linked to dominant axonal peripheral neuropathy.
Hum Mutat. 2018 Mar;39(3):415-432. doi: 10.1002/humu.23380. Epub 2017 Dec 26.

本文引用的文献

2
Life without post-transcriptional addition of G-1: two alternatives for tRNAHis identity in Eukarya.
RNA. 2015 Feb;21(2):243-53. doi: 10.1261/rna.048389.114. Epub 2014 Dec 12.
3
Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis.
J Biol Chem. 2014 Jul 11;289(28):19269-75. doi: 10.1074/jbc.C114.571026. Epub 2014 Jun 4.
4
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
5
Autoantibodies in polymyositis and dermatomyositis.
Curr Rheumatol Rep. 2013 Jun;15(6):335. doi: 10.1007/s11926-013-0335-1.
6
Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii.
Nucleic Acids Res. 2013 Feb 1;41(3):1885-94. doi: 10.1093/nar/gks1242. Epub 2012 Dec 14.
7
Doing it in reverse: 3'-to-5' polymerization by the Thg1 superfamily.
RNA. 2012 May;18(5):886-99. doi: 10.1261/rna.032300.112. Epub 2012 Mar 28.
8
Genetic mapping and exome sequencing identify variants associated with five novel diseases.
PLoS One. 2012;7(1):e28936. doi: 10.1371/journal.pone.0028936. Epub 2012 Jan 17.
10
Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome.
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6543-8. doi: 10.1073/pnas.1103471108. Epub 2011 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验