Liu Yu, Enders Craig K
a Department of Psychological, Health, and Learning Sciences , University of Houston.
b Department of Psychology , University of California , Los Angeles.
Multivariate Behav Res. 2017 May-Jun;52(3):371-390. doi: 10.1080/00273171.2017.1298432. Epub 2017 Mar 22.
In Ordinary Least Square regression, researchers often are interested in knowing whether a set of parameters is different from zero. With complete data, this could be achieved using the gain in prediction test, hierarchical multiple regression, or an omnibus F test. However, in substantive research scenarios, missing data often exist. In the context of multiple imputation, one of the current state-of-art missing data strategies, there are several different analogous multi-parameter tests of the joint significance of a set of parameters, and these multi-parameter test statistics can be referenced to various distributions to make statistical inferences. However, little is known about the performance of these tests, and virtually no research study has compared the Type 1 error rates and statistical power of these tests in scenarios that are typical of behavioral science data (e.g., small to moderate samples, etc.). This paper uses Monte Carlo simulation techniques to examine the performance of these multi-parameter test statistics for multiple imputation under a variety of realistic conditions. We provide a number of practical recommendations for substantive researchers based on the simulation results, and illustrate the calculation of these test statistics with an empirical example.
在普通最小二乘回归中,研究人员通常想知道一组参数是否不同于零。对于完整数据,可以使用预测检验增益、分层多元回归或综合F检验来实现这一点。然而,在实际研究场景中,缺失数据经常存在。在多重填补(当前最先进的缺失数据策略之一)的背景下,有几种不同的类似多参数检验可用于检验一组参数的联合显著性,并且这些多参数检验统计量可以参考各种分布来进行统计推断。然而,人们对这些检验的性能了解甚少,而且几乎没有研究在行为科学数据典型的场景(例如,小到中等样本量等)中比较过这些检验的一类错误率和统计功效。本文使用蒙特卡罗模拟技术来检验这些多参数检验统计量在各种现实条件下对多重填补的性能。我们根据模拟结果为实际研究人员提供了一些实用建议,并用一个实证例子说明了这些检验统计量的计算方法。