Suppr超能文献

评估食品工业的一些木质纤维素副产品用于热带假丝酵母生产微生物木糖醇的情况。

Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis.

作者信息

Eryasar Kubra, Karasu-Yalcin Seda

机构信息

Food Engineering Department, Faculty of Engineering and Architecture, Abant Izzet Baysal University, Golkoy, 14280, Bolu, Turkey.

出版信息

3 Biotech. 2016 Dec;6(2):202. doi: 10.1007/s13205-016-0521-8. Epub 2016 Sep 22.

Abstract

Some lignocellulosic food byproducts such as potato peels, wheat bran, barley bran and chestnut shells were evaluated as potential sources of xylose for microbial xylitol production by yeasts. Potential yeast strains were selected after screening xylitol production of some indigenous yeasts in a defined fermentation medium. Candida tropicalis strains gave the highest results with 83.28 and 54.07 g/L xylitol production from 100 g/L xylose. Lignocellulosic materials were exposed to acid hydrolysis at different conditions. Chestnut shells gave the highest xylose yield and the hydrolysate of chestnut shells was used in further experiments in which xylitol productions of two potential C. tropicalis strains were investigated. Combined detoxification method including evaporation, overliming and activated charcoal with the use of threefold concentration and also yeast extract supplementation suggested to be efficient for both growth and product formation in chestnut shell hydrolysate in which 40 % xylitol yield was obtained. It was concluded that detoxified and fortified chestnut shell hydrolysate could be a potential medium for xylitol production.

摘要

一些木质纤维素类食品副产品,如马铃薯皮、麦麸、大麦麸和板栗壳,被评估为酵母生产微生物木糖醇的潜在木糖来源。在特定发酵培养基中筛选了一些本地酵母的木糖醇生产情况后,挑选出了潜在的酵母菌株。热带假丝酵母菌株在以100 g/L木糖为原料时,木糖醇产量最高,分别为83.28 g/L和54.07 g/L。将木质纤维素材料在不同条件下进行酸水解。板栗壳的木糖产率最高,其水解产物被用于进一步实验,研究了两株潜在热带假丝酵母菌株的木糖醇生产情况。包括蒸发、过石灰处理和活性炭处理在内的联合解毒方法,采用三倍浓度并添加酵母提取物,被认为对板栗壳水解产物中的生长和产物形成均有效,在该水解产物中木糖醇产率达到了40%。得出的结论是,解毒并强化的板栗壳水解产物可能是生产木糖醇的潜在培养基。

相似文献

1
Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production by Candida tropicalis.
3 Biotech. 2016 Dec;6(2):202. doi: 10.1007/s13205-016-0521-8. Epub 2016 Sep 22.
2
Optimization of activated charcoal detoxification and concentration of chestnut shell hydrolysate for xylitol production.
Biotechnol Lett. 2021 Jun;43(6):1195-1209. doi: 10.1007/s10529-021-03087-0. Epub 2021 Mar 2.
3
Detoxification of areca nut acid hydrolysate and production of xylitol by (MTCC 6192).
Prep Biochem Biotechnol. 2024 Jan;54(1):61-72. doi: 10.1080/10826068.2023.2207093. Epub 2023 May 7.
4
6
Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production.
Appl Biochem Biotechnol. 2004 Oct;119(1):13-30. doi: 10.1385/abab:119:1:13.
7
Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192.
Bioresour Technol. 2018 Mar;251:416-419. doi: 10.1016/j.biortech.2017.11.039. Epub 2017 Dec 8.
8
Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis.
Carbohydr Polym. 2013 Feb 15;92(2):1596-601. doi: 10.1016/j.carbpol.2012.11.033. Epub 2012 Nov 19.
9
Detoxification Approaches of Bagasse Pith Hydrolysate Affecting Xylitol Production by Rhodotorula mucilaginosa.
Appl Biochem Biotechnol. 2024 Jan;196(1):129-144. doi: 10.1007/s12010-023-04539-1. Epub 2023 Apr 27.
10
Xylitol Production by Candida tropicalis from Areca Nut Husk Enzymatic Hydrolysate and Crystallization.
Appl Biochem Biotechnol. 2023 Dec;195(12):7298-7321. doi: 10.1007/s12010-023-04469-y. Epub 2023 Mar 30.

引用本文的文献

2
Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries.
Microb Biotechnol. 2022 Mar;15(3):985-995. doi: 10.1111/1751-7915.13886. Epub 2021 Jul 21.

本文引用的文献

2
Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production.
Bioresour Technol. 2016 Jan;200:1085-8. doi: 10.1016/j.biortech.2015.11.036. Epub 2015 Nov 23.
4
Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis.
Biotechnol Lett. 2015 Jan;37(1):191-6. doi: 10.1007/s10529-014-1672-5. Epub 2014 Sep 12.
5
Xylitol: a review on bioproduction, application, health benefits, and related safety issues.
Crit Rev Food Sci Nutr. 2015;55(11):1514-28. doi: 10.1080/10408398.2012.702288.
6
Xylitol production by Cyberlindnera (Williopsis) saturnus, a tropical mangrove yeast from xylose and corn cob hydrolysate.
J Appl Microbiol. 2013 Dec;115(6):1357-67. doi: 10.1111/jam.12327. Epub 2013 Sep 13.
8
The optimization of dilute acid hydrolysis of cotton stalk in xylose production.
Appl Biochem Biotechnol. 2011 Jan;163(2):313-25. doi: 10.1007/s12010-010-9040-y. Epub 2010 Jul 24.
9
Characterization of the yeast flora present in some Turkish high-sugar products.
J Gen Appl Microbiol. 2006 Apr;52(2):99-106. doi: 10.2323/jgam.52.99.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验