Merrem A, Bartzsch S, Laissue J, Oelfke U
Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany. This work was carried out at the German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
Phys Med Biol. 2017 May 21;62(10):3902-3922. doi: 10.1088/1361-6560/aa68d5. Epub 2017 Mar 23.
Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.
微束放射治疗是一种创新的临床前治疗策略,它使用平行的、宽度为数十微米的千伏光子束阵列来治疗肿瘤。这些X射线束通常在同步加速器源上产生。研究表明,这些束几何结构能够在有效消融肿瘤的同时,使正常组织免受辐射损伤。目前尚未找到对这种提高的治疗比的最终生物学解释,一些实验数据支持脉管系统起重要作用。在这项工作中,通过计算机模拟评估了微束对大脑皮质正常微血管网络的影响,并将其与同等能量吸收下均匀、无缝照射的效果进行了比较。使用一种新的血管辐射损伤概率模型,模拟了大脑微血管网络的解剖结构和所造成的辐射损伤,以紧密模拟实验数据。研究发现,微束阵列的空间剂量分割显著降低了血管损伤。峰谷剂量比越高,保护效果越明显。对作为血管网络形态学参数函数的辐射损伤进行模拟表明,血管半径分布是决定脉管系统整体辐射损伤以及微束照射剂量依赖性差异效应的关键参数。