Ulrich Alexander K C, Wahl Markus C
Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195, Berlin, Germany.
Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489, Berlin, Germany.
BMC Evol Biol. 2017 Mar 24;17(1):91. doi: 10.1186/s12862-017-0923-1.
Pre-mRNA splicing involves the stepwise assembly of a pre-catalytic spliceosome, followed by its catalytic activation, splicing catalysis and disassembly. Formation of the pre-catalytic spliceosomal B complex involves the incorporation of the U4/U6.U5 tri-snRNP and of a group of non-snRNP B-specific proteins. While in Saccharomyces cerevisiae the Prp38 and Snu23 proteins are recruited as components of the tri-snRNP, metazoan orthologs of Prp38 and Snu23 associate independently of the tri-snRNP as members of the B-specific proteins. The human spliceosome contains about 80 proteins that lack obvious orthologs in yeast, including most of the B-specific proteins apart from Prp38 and Snu23. Conversely, the tri-snRNP protein Spp381 is one of only five S. cerevisiae splicing factors without a known human ortholog.
Using InParanoid, a state-of-the-art method for ortholog inference between pairs of species, and systematic BLAST searches we identified the human B-specific protein MFAP1 as a putative ortholog of the S. cerevisiae tri-snRNP protein Spp381. Bioinformatics revealed that MFAP1 and Spp381 share characteristic structural features, including intrinsic disorder, an elongated shape, solvent exposure of most residues and a trend to adopt α-helical structures. In vitro binding studies showed that human MFAP1 and yeast Spp381 bind their respective Prp38 proteins via equivalent interfaces and that they cross-interact with the Prp38 proteins of the respective other species. Furthermore, MFAP1 and Spp381 both form higher-order complexes that additionally include Snu23, suggesting that they are parts of equivalent spliceosomal sub-complexes. Finally, similar to yeast Spp381, human MFAP1 partially rescued a growth defect of the temperature-sensitive mutant yeast strain prp38-1.
Human B-specific protein MFAP1 structurally and functionally resembles the yeast tri-snRNP-specific protein Spp381 and thus qualifies as its so far missing ortholog. Our study indicates that the yeast Snu23-Prp38-Spp381 triple complex was evolutionarily reprogrammed from a tri-snRNP-specific module in yeast to the B-specific Snu23-Prp38-MFAP1 module in metazoa, affording higher flexibility in spliceosome assembly and thus, presumably, in splicing regulation.
前体mRNA剪接涉及催化前剪接体的逐步组装,随后是其催化激活、剪接催化和解聚。催化前剪接体B复合物的形成涉及U4/U6.U5三小核核糖核蛋白颗粒(tri-snRNP)和一组非小核核糖核蛋白B特异性蛋白的掺入。在酿酒酵母中,Prp38和Snu23蛋白作为tri-snRNP的组分被招募,而Prp38和Snu23的后生动物直系同源物作为B特异性蛋白的成员独立于tri-snRNP而结合。人类剪接体包含约80种在酵母中缺乏明显直系同源物的蛋白质,包括除Prp38和Snu23之外的大多数B特异性蛋白。相反,tri-snRNP蛋白Spp381是酿酒酵母中仅有的五种没有已知人类直系同源物的剪接因子之一。
使用InParanoid(一种用于推断物种对之间直系同源物的先进方法)和系统的BLAST搜索,我们鉴定出人类B特异性蛋白MFAP1是酿酒酵母tri-snRNP蛋白Spp381的假定直系同源物。生物信息学显示,MFAP1和Spp381具有共同的结构特征,包括内在无序、细长形状、大多数残基暴露于溶剂中以及呈现α螺旋结构的趋势。体外结合研究表明,人类MFAP1和酵母Spp381通过等效界面结合各自的Prp38蛋白,并且它们与各自另一物种的Prp38蛋白发生交叉相互作用。此外,MFAP1和Spp381都形成了另外还包括Snu23的高阶复合物,这表明它们是等效剪接体亚复合物的组成部分。最后,与酵母Spp381类似,人类MFAP1部分挽救了温度敏感型突变酵母菌株prp38-1的生长缺陷。
人类B特异性蛋白MFAP1在结构和功能上类似于酵母tri-snRNP特异性蛋白Spp381,因此可认定为其迄今缺失的直系同源物。我们的研究表明,酵母Snu23-Prp38-Spp381三联复合物在进化过程中从酵母中的tri-snRNP特异性模块重新编程为后生动物中的B特异性Snu23-Prp38-MFAP1模块,从而在剪接体组装中提供了更高的灵活性,因此大概在剪接调控中也是如此。