Suppr超能文献

微阵列研究的一致性分析确定帕金森病中有代表性的基因表达变化:33项人类和动物研究的比较

Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson's disease: a comparison of 33 human and animal studies.

作者信息

Oerton Erin, Bender Andreas

机构信息

Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.

出版信息

BMC Neurol. 2017 Mar 23;17(1):58. doi: 10.1186/s12883-017-0838-x.

Abstract

BACKGROUND

As the popularity of transcriptomic analysis has grown, the reported lack of concordance between different studies of the same condition has become a growing concern, raising questions as to the representativeness of different study types, such as non-human disease models or studies of surrogate tissues, to gene expression in the human condition.

METHODS

In a comparison of 33 microarray studies of Parkinson's disease, correlation and clustering analyses were used to determine the factors influencing concordance between studies, including agreement between different tissue types, different microarray platforms, and between neurotoxic and genetic disease models and human Parkinson's disease.

RESULTS

Concordance over all studies is low, with correlation of only 0.05 between differential gene expression signatures on average, but increases within human patients and studies of the same tissue type, rising to 0.38 for studies of human substantia nigra. Agreement of animal models, however, is dependent on model type. Studies of brain tissue from Parkinson's disease patients (specifically the substantia nigra) form a distinct group, showing patterns of differential gene expression noticeably different from that in non-brain tissues and animal models of Parkinson's disease; while comparison with other brain diseases (Alzheimer's disease and brain cancer) suggests that the mixed study types display a general signal of neurodegenerative disease. A meta-analysis of these 33 microarray studies demonstrates the greater ability of studies in humans and highly-affected tissues to identify genes previously known to be associated with Parkinson's disease.

CONCLUSIONS

The observed clustering and concordance results suggest the existence of a 'characteristic' signal of Parkinson's disease found in significantly affected human tissues in humans. These results help to account for the consistency (or lack thereof) so far observed in microarray studies of Parkinson's disease, and act as a guide to the selection of transcriptomic studies most representative of the underlying gene expression changes in the human disease.

摘要

背景

随着转录组分析的日益普及,同一疾病不同研究报告之间缺乏一致性的问题日益受到关注,引发了关于不同研究类型(如非人类疾病模型或替代组织研究)对人类疾病基因表达代表性的质疑。

方法

在对33项帕金森病微阵列研究的比较中,采用相关性和聚类分析来确定影响研究间一致性的因素,包括不同组织类型、不同微阵列平台之间的一致性,以及神经毒性和遗传疾病模型与人类帕金森病之间的一致性。

结果

所有研究的一致性较低,平均差异基因表达特征之间的相关性仅为0.05,但在人类患者和同一组织类型的研究中有所增加,人类黑质研究的相关性升至0.38。然而,动物模型的一致性取决于模型类型。帕金森病患者脑组织(特别是黑质)的研究形成了一个独特的组,显示出与帕金森病非脑组织和动物模型明显不同的差异基因表达模式;与其他脑部疾病(阿尔茨海默病和脑癌)的比较表明,混合研究类型显示出神经退行性疾病的一般信号。对这33项微阵列研究的荟萃分析表明,人类和高受影响组织的研究在识别先前已知与帕金森病相关基因方面具有更强的能力。

结论

观察到的聚类和一致性结果表明,在人类受显著影响的组织中存在帕金森病的“特征性”信号。这些结果有助于解释迄今为止在帕金森病微阵列研究中观察到的一致性(或缺乏一致性),并为选择最能代表人类疾病潜在基因表达变化的转录组研究提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6219/5364698/692040531411/12883_2017_838_Fig1_HTML.jpg

相似文献

2
Transcriptomic profiles in Parkinson's disease.
Exp Biol Med (Maywood). 2021 Mar;246(5):584-595. doi: 10.1177/1535370220967325. Epub 2020 Nov 4.
4
Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology.
Brain. 2009 Jul;132(Pt 7):1795-809. doi: 10.1093/brain/awn323. Epub 2008 Dec 3.
5
A cross-study transcriptional analysis of Parkinson's disease.
PLoS One. 2009;4(3):e4955. doi: 10.1371/journal.pone.0004955. Epub 2009 Mar 23.
7
Expression signatures of long non-coding RNA in the substantia nigra of pre-symptomatic mouse model of Parkinson's disease.
Behav Brain Res. 2017 Jul 28;331:123-130. doi: 10.1016/j.bbr.2017.04.044. Epub 2017 May 2.
8
Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson's disease.
Neurogenetics. 2006 Jul;7(3):139-48. doi: 10.1007/s10048-006-0033-5. Epub 2006 May 13.
9
Network Analysis Identifies Disease-Specific Pathways for Parkinson's Disease.
Mol Neurobiol. 2018 Jan;55(1):370-381. doi: 10.1007/s12035-016-0326-0. Epub 2016 Dec 21.

引用本文的文献

2
Disease Duration Influences Gene Expression in Neuromelanin-Positive Cells From Parkinson's Disease Patients.
Front Mol Neurosci. 2021 Nov 11;14:763777. doi: 10.3389/fnmol.2021.763777. eCollection 2021.
3
Identification of Genes Potentially Associated with Melanoma Tumorigenesis Through Co-Expression Network Analysis.
Int J Gen Med. 2021 Nov 19;14:8495-8508. doi: 10.2147/IJGM.S336295. eCollection 2021.
4
Transcriptomic Signatures Associated With Regional Cortical Thickness Changes in Parkinson's Disease.
Front Neurosci. 2021 Oct 1;15:733501. doi: 10.3389/fnins.2021.733501. eCollection 2021.
7
Transcriptomic signatures of brain regional vulnerability to Parkinson's disease.
Commun Biol. 2020 Mar 5;3(1):101. doi: 10.1038/s42003-020-0804-9.
8
The landscape of multiscale transcriptomic networks and key regulators in Parkinson's disease.
Nat Commun. 2019 Nov 20;10(1):5234. doi: 10.1038/s41467-019-13144-y.
10
Animal to human translation: a systematic scoping review of reported concordance rates.
J Transl Med. 2019 Jul 15;17(1):223. doi: 10.1186/s12967-019-1976-2.

本文引用的文献

1
Correlation Patterns in Experimental Data Are Affected by Normalization Procedures: Consequences for Data Analysis and Network Inference.
J Proteome Res. 2017 Feb 3;16(2):619-634. doi: 10.1021/acs.jproteome.6b00704. Epub 2016 Dec 15.
2
Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization.
BMC Med Genomics. 2016 Mar 9;9:12. doi: 10.1186/s12920-016-0173-x.
3
ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization.
Mol Biosyst. 2016 Feb;12(2):477-9. doi: 10.1039/c5mb00663e.
4
Microarray experiments and factors which affect their reliability.
Biol Direct. 2015 Sep 3;10:46. doi: 10.1186/s13062-015-0077-2.
5
Translation of disease associated gene signatures across tissues.
Int J Data Min Bioinform. 2015;11(3):301-13. doi: 10.1504/ijdmb.2015.067321.
6
A survey of current trends in computational drug repositioning.
Brief Bioinform. 2016 Jan;17(1):2-12. doi: 10.1093/bib/bbv020. Epub 2015 Mar 31.
7
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015 Apr 20;43(7):e47. doi: 10.1093/nar/gkv007. Epub 2015 Jan 20.
8
Genomic responses in mouse models greatly mimic human inflammatory diseases.
Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1167-72. doi: 10.1073/pnas.1401965111. Epub 2014 Aug 4.
9
Direct and indirect pathways of basal ganglia: a critical reappraisal.
Nat Neurosci. 2014 Aug;17(8):1022-30. doi: 10.1038/nn.3743. Epub 2014 Jul 28.
10
Inconsistency in large pharmacogenomic studies.
Nature. 2013 Dec 19;504(7480):389-93. doi: 10.1038/nature12831. Epub 2013 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验