Suppr超能文献

间歇性运动中短时间工作与长时间工作对 V̇o 动力学、肌肉去氧合和能量系统贡献的影响。

The effects of short work vs. longer work periods within intermittent exercise on V̇o kinetics, muscle deoxygenation, and energy system contribution.

机构信息

School of Kinesiology, Canadian Center for Activity and Aging, University of Western Ontario, London, Ontario, Canada.

School of Kinesiology, Canadian Center for Activity and Aging, University of Western Ontario, London, Ontario, Canada

出版信息

J Appl Physiol (1985). 2017 Jun 1;122(6):1435-1444. doi: 10.1152/japplphysiol.00514.2016. Epub 2017 Mar 23.

Abstract

We examined the effects of inserting 3-s recovery periods during high-intensity cycling exercise at 25-s and 10-s intervals on pulmonary oxygen uptake (V̇o), muscle deoxygenation [deoxyhemoglobin (HHb)], their associated kinetics (τ), and energy system contributions. Eleven men (24 ± 3 yr) completed two trials of three cycling protocols: an 8-min continuous protocol (CONT) and two 8-min intermittent exercise protocols with work-to-rest periods of 25 s to 3 s (25INT) and 10 s to 3 s (10INT). Each protocol began with a step-transition from a 20-W baseline to a power output (PO) of 60% between lactate threshold and maximal V̇o (Δ60). This PO was maintained for 8 min in CONT, whereas 3-s periods of 20-W cycling were inserted every 10 s and 25 s after the transition to Δ60 in 10INT and 25INT, respectively. Breath-by-breath gas exchange measured by mass spectrometry and turbine and vastus lateralis [HHb] measured by near-infrared spectroscopy were recorded throughout. Arterialized-capillary lactate concentration ([Lac]) was obtained before and 2 min postexercise. The τV̇o was lowest ( < 0.05) for 10INT (24 ± 4 s) and 25INT (23 ± 5 s) compared with CONT (28 ± 4 s), whereas HHb kinetics did not differ ( > 0.05) between conditions. Postexercise [Lac] was lowest ( < 0.05) for 10INT (7.0 ± 1.7 mM), was higher for 25INT (10.3 ± 1.9 mM), and was greatest in CONT (14.3 ± 3.1 mM). Inserting 3-s recovery periods during heavy-intensity exercise speeded V̇o kinetics and reduced overall V̇o, suggesting an increased reliance on PCr-derived phosphorylation during the work period of INT compared with an identical PO performed continuously. We report novel observations on the effects of differing heavy-intensity work durations between 3-s recovery periods on pulmonary oxygen uptake (V̇o) kinetics, muscle deoxygenation, and energy system contributions. Relative to continuous exercise, V̇o kinetics are faster in intermittent exercise, and increased frequency of 3-s recovery periods improves microvascular O delivery and reduces V̇o and arterialized-capillary lactate concentration. The metabolic burden of identical intensity work is altered when performed intermittently vs. continuously.

摘要

我们研究了在 25 秒和 10 秒的间隔高强度自行车运动期间插入 3 秒恢复期对肺氧摄取 (V̇o)、肌肉去氧合 [脱氧血红蛋白 (HHb)]、相关动力学 (τ) 和能量系统贡献的影响。11 名男性(24 ± 3 岁)完成了三个自行车方案的两个试验:连续 8 分钟的方案 (CONT) 和两个 8 分钟的间歇性运动方案,工作-休息期为 25 秒至 3 秒 (25INT) 和 10 秒至 3 秒 (10INT)。每个方案都从 20 瓦的基线到乳酸阈和最大 V̇o (Δ60) 之间的 60%的功率输出 (PO) 进行逐步过渡。CONT 中在 8 分钟内保持此 PO,而在 10INT 和 25INT 中,分别在过渡到 Δ60 后每 10 秒和 25 秒插入 3 秒的 20 瓦自行车运动。通过质谱仪和涡轮机以及股外侧肌 [HHb]测量的呼吸到呼吸气体交换通过近红外光谱进行记录。运动前和运动后 2 分钟测量动脉化毛细血管乳酸浓度 ([Lac])。与 CONT (28 ± 4 s) 相比,10INT (24 ± 4 s) 和 25INT (23 ± 5 s) 的 V̇o 动力学的 τ 最低(<0.05),而 HHb 动力学没有差异(>0.05)。运动后 [Lac] 最低(<0.05)为 10INT(7.0 ± 1.7 mM),25INT 较高(10.3 ± 1.9 mM),CONT 最高(14.3 ± 3.1 mM)。在高强度运动期间插入 3 秒恢复期可加快 V̇o 动力学并降低整体 V̇o,这表明与连续进行的相同 PO 相比,INT 工作期间对 PCr 衍生磷酸化的依赖性增加。我们报告了关于在 3 秒恢复期之间不同的高强度工作持续时间对肺氧摄取 (V̇o) 动力学、肌肉去氧合和能量系统贡献的影响的新观察结果。与连续运动相比,间歇运动的 V̇o 动力学更快,增加 3 秒恢复期的频率可改善微血管 O 输送并降低 V̇o 和动脉化毛细血管乳酸浓度。当以间歇方式而不是连续方式进行时,相同强度工作的代谢负担会发生变化。

相似文献

1
The effects of short work vs. longer work periods within intermittent exercise on V̇o kinetics, muscle deoxygenation, and energy system contribution.
J Appl Physiol (1985). 2017 Jun 1;122(6):1435-1444. doi: 10.1152/japplphysiol.00514.2016. Epub 2017 Mar 23.
2
Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise.
J Appl Physiol (1985). 2003 Jul;95(1):113-20. doi: 10.1152/japplphysiol.00956.2002. Epub 2003 Apr 4.
3
Effects of prior heavy-intensity exercise on pulmonary O2 uptake and muscle deoxygenation kinetics in young and older adult humans.
J Appl Physiol (1985). 2004 Sep;97(3):998-1005. doi: 10.1152/japplphysiol.01280.2003. Epub 2004 May 7.
4
Faster pulmonary oxygen uptake kinetics in children vs adults due to enhancements in oxygen delivery and extraction.
Scand J Med Sci Sports. 2013 Dec;23(6):705-12. doi: 10.1111/j.1600-0838.2012.01446.x. Epub 2012 Feb 21.
5
Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance.
J Appl Physiol (1985). 2009 Jul;107(1):128-38. doi: 10.1152/japplphysiol.90828.2008. Epub 2009 May 14.
6
Effect of prior exercise on pulmonary O2 uptake and estimated muscle capillary blood flow kinetics during moderate-intensity field running in men.
J Appl Physiol (1985). 2009 Aug;107(2):460-70. doi: 10.1152/japplphysiol.91625.2008. Epub 2009 Jun 4.
8
Systemic and vastus lateralis muscle blood flow and O2 extraction during ramp incremental cycle exercise.
Am J Physiol Regul Integr Comp Physiol. 2013 May 1;304(9):R720-5. doi: 10.1152/ajpregu.00016.2013. Epub 2013 Mar 20.
9
Influence of priming exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity cycling in type 2 diabetes.
J Appl Physiol (1985). 2019 Oct 1;127(4):1140-1149. doi: 10.1152/japplphysiol.00344.2019. Epub 2019 Aug 15.
10
The effect of increasing work rate amplitudes from a common metabolic baseline on the kinetic response of V̇o, blood flow, and muscle deoxygenation.
J Appl Physiol (1985). 2023 Sep 1;135(3):584-600. doi: 10.1152/japplphysiol.00566.2022. Epub 2023 Jul 13.

引用本文的文献

1
Adaptations to 4 weeks of high-intensity interval training in healthy adults with different training backgrounds.
Eur J Appl Physiol. 2023 Jun;123(6):1283-1297. doi: 10.1007/s00421-023-05152-0. Epub 2023 Feb 16.
2
Physiological resolution of periodic breath holding during heavy-intensity Fartlek exercise.
Eur J Appl Physiol. 2018 Dec;118(12):2627-2639. doi: 10.1007/s00421-018-3986-9. Epub 2018 Sep 11.

本文引用的文献

1
Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.
J Appl Physiol (1985). 2017 Mar 1;122(3):446-459. doi: 10.1152/japplphysiol.00942.2016. Epub 2016 Dec 22.
2
Influence of muscle metabolic heterogeneity in determining the V̇o2p kinetic response to ramp-incremental exercise.
J Appl Physiol (1985). 2016 Mar 1;120(5):503-13. doi: 10.1152/japplphysiol.00804.2015. Epub 2015 Dec 17.
5
Breath-by-breath pulmonary O2 uptake kinetics: effect of data processing on confidence in estimating model parameters.
Exp Physiol. 2014 Nov;99(11):1511-22. doi: 10.1113/expphysiol.2014.080812. Epub 2014 Jul 25.
6
Bioenergetics of exercising humans.
Compr Physiol. 2012 Jan;2(1):537-62. doi: 10.1002/cphy.c110007.
7
Noninvasive estimation of microvascular O2 provision during exercise on-transients in healthy young males.
Am J Physiol Regul Integr Comp Physiol. 2012 Oct 15;303(8):R815-23. doi: 10.1152/ajpregu.00306.2012. Epub 2012 Aug 22.
8
Muscle metabolic status and acid-base balance during 10-s work:5-s recovery intermittent and continuous exercise.
J Appl Physiol (1985). 2012 Aug;113(3):410-7. doi: 10.1152/japplphysiol.01059.2011. Epub 2012 May 17.
9
Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans.
J Appl Physiol (1985). 2012 Jul;113(2):215-23. doi: 10.1152/japplphysiol.00022.2012. Epub 2012 May 3.
10
Characterizing the profile of muscle deoxygenation during ramp incremental exercise in young men.
Eur J Appl Physiol. 2012 Sep;112(9):3349-60. doi: 10.1007/s00421-012-2323-y. Epub 2012 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验