Suppr超能文献

基于 0D/1D 混杂纳米材料复合毡的多硫化物呼吸/双导、异质层状电池隔板膜。

Polysulfide-Breathing/Dual-Conductive, Heterolayered Battery Separator Membranes Based on 0D/1D Mingled Nanomaterial Composite Mats.

机构信息

Department of Energy Engineering, School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea.

Department of Forest Products, Korea Forest Research Institute , Seoul 02455, Korea.

出版信息

Nano Lett. 2017 Apr 12;17(4):2220-2228. doi: 10.1021/acs.nanolett.6b04830. Epub 2017 Mar 28.

Abstract

Facile/sustainable utilization of sulfur active materials is an ultimate challenge in high-performance lithium-sulfur (Li-S) batteries. Here, as a membrane-driven approach to address this issue, we demonstrate a new class of polysulfide-breathing (capable of reversibly adsorbing and desorbing polysulfides)/dual (electron and ion) conductive, heterolayered battery separator membranes (denoted as "MEC-AA separators") based on 0D (nanoparticles)/1D (nanofibers) composite mats. The MEC-AA separator is fabricated through an in-series, concurrent electrospraying/electrospinning process. The top layer of the MEC-AA separator comprises close-packed mesoporous MCM-41 nanoparticles spatially besieged by multiwalled carbon nanotubes (MWNT) wrapped poly(ether imide) (PEI) nanofibers. The MCM-41 in the top layer shows reversible adsorption/desorption of polysulfides, and the MWNT-wrapped PEI nanofibers act as a dual-conductive upper current collector. Preferential deposition of the MWNTs along the PEI nanofibers and dispersion state of the separator components are elucidated theoretically using computational methods. The support layer, which consists of densely packed AlO nanoparticles and polyacrylonitrile nanofibers, serves as a mechanically/thermally stable and polysulfide-capturing porous membrane. The unique structure and multifunctionality of the MEC-AA separator allow for substantial improvements in redox reaction kinetics and cycling performance of Li-S cells far beyond those achievable with conventional polyolefin separators. The heterolayered nanomat-based membrane strategy opens a new route toward electrochemically active/permselective advanced battery separators.

摘要

高效能锂硫(Li-S)电池面临的终极挑战是如何简易且可持续地利用硫活性材料。在此,我们提出了一种基于多硫化物吸附/解吸(能够可逆地吸附和解吸多硫化物)/双(电子和离子)导,异质层状电池隔板膜(称为“MEC-AA 隔板”)的膜驱动方法,该隔板基于 0D(纳米颗粒)/1D(纳米纤维)复合毡。MEC-AA 隔板是通过串联的电喷/静电纺丝工艺制备的。MEC-AA 隔板的顶层由紧密堆积的介孔 MCM-41 纳米颗粒组成,这些纳米颗粒被多壁碳纳米管(MWNT)包裹的聚醚酰亚胺(PEI)纳米纤维包围。顶层的 MCM-41 对多硫化物具有可逆的吸附/解吸能力,而 MWNT 包裹的 PEI 纳米纤维则充当双导电上集流器。使用计算方法从理论上阐明了 MWNTs 沿 PEI 纳米纤维的优先沉积和隔板组件的分散状态。由紧密堆积的 AlO 纳米颗粒和聚丙烯腈纳米纤维组成的支撑层,用作机械/热稳定且捕获多硫化物的多孔膜。MEC-AA 隔板的独特结构和多功能性使得 Li-S 电池的氧化还原反应动力学和循环性能得到了极大的改善,远远超过了传统聚烯烃隔板所能达到的水平。基于异质层纳米材料的膜策略为电化学活性/选择性先进电池隔板开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验