University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, Texas.
University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, Texas.
Pract Radiat Oncol. 2017 Sep-Oct;7(5):e345-e354. doi: 10.1016/j.prro.2017.01.014. Epub 2017 Feb 2.
Four-dimensional computed tomography (4D CT) is often used to define the internal gross target volume (IGTV) for radiation therapy of lung cancer. Traditionally, this technique requires the use of an external motion surrogate; however, a new image, data-driven 4D CT, has become available. This study aims to describe this data-driven 4D CT and compare target contours created with it to those created using standard 4D CT.
Cine CT data of 35 patients undergoing stereotactic body radiation therapy were collected and sorted into phases using standard and data-driven 4D CT. IGTV contours were drawn using a semiautomated method on maximum intensity projection images of both 4D CT methods. Errors resulting from reproducibility of the method were characterized. A comparison of phase image artifacts was made using a normalized cross-correlation method that assigned a score from +1 (data-driven "better") to -1 (standard "better").
The volume difference between the data-driven and standard IGTVs was not significant (data driven was 2.1 ± 1.0% smaller, P = .08). The Dice similarity coefficient showed good similarity between the contours (0.949 ± 0.006). The mean surface separation was 0.4 ± 0.1 mm and the Hausdorff distance was 3.1 ± 0.4 mm. An average artifact score of +0.37 indicated that the data-driven method had significantly fewer and/or less severe artifacts than the standard method (P = 1.5 × 10 for difference from 0).
On average, the difference between IGTVs derived from data-driven and standard 4D CT was not clinically relevant or statistically significant, suggesting data-driven 4D CT can be used in place of standard 4D CT without adjustments to IGTVs. The relatively large differences in some patients were usually attributed to limitations in automatic contouring or differences in artifacts. Artifact reduction and setup simplicity suggest a clinical advantage to data-driven 4D CT.
四维计算机断层扫描(4D CT)常用于定义肺癌放射治疗的内部大体肿瘤靶区(IGTV)。传统上,该技术需要使用外部运动替代物;但是,一种新的基于图像、数据驱动的 4D CT 已被应用。本研究旨在描述这种基于数据的 4D CT,并比较使用该方法生成的靶区轮廓与使用标准 4D CT 生成的靶区轮廓。
对 35 例接受立体定向体部放射治疗的患者的电影 CT 数据进行采集,并使用标准和基于数据的 4D CT 进行相位排序。使用两种 4D CT 方法的最大强度投影图像上的半自动方法绘制 IGTV 轮廓。对方法的可重复性误差进行了特征描述。使用归一化互相关方法比较相位图像伪影,该方法分配的分数为+1(数据驱动“更好”)至-1(标准“更好”)。
基于数据的和标准的 IGTV 之间的体积差异无统计学意义(数据驱动的小 2.1%±1.0%,P=0.08)。Dice 相似系数显示轮廓之间具有很好的相似性(0.949±0.006)。平均表面分离为 0.4±0.1mm,Hausdorff 距离为 3.1±0.4mm。平均伪影评分为+0.37,表明数据驱动的方法的伪影明显少于/或程度明显低于标准方法(差异来自 0,P=1.5×10)。
平均而言,基于数据的 4D CT 和标准 4D CT 生成的 IGTV 之间的差异无临床意义或无统计学意义,表明无需调整 IGTV 即可使用基于数据的 4D CT 代替标准 4D CT。在一些患者中相对较大的差异通常归因于自动勾画的限制或伪影的差异。伪影减少和简化定位表明数据驱动的 4D CT 具有临床优势。