Burnett James C, Lim Chaemin, Peyser Brian D, Samankumara Lalith P, Kovaliov Marina, Colombo Raffaele, Bulfer Stacie L, LaPorte Matthew G, Hermone Ann R, McGrath Connor F, Arkin Michelle R, Gussio Rick, Huryn Donna M, Wipf Peter
Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA.
Org Biomol Chem. 2017 May 16;15(19):4096-4114. doi: 10.1039/c7ob00526a.
The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ torsion by 150-180° orients the side chain β-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.
两个相邻苏氨酸的旋转门运动建立了一种动态的侧链相互作用,这种相互作用能够在小分子变构蛋白结合位点容纳极性和非极性配体。基于SAR数据以及AAA ATP酶p97的X射线和冷冻电镜结构构建的计算模型,被用于分析抑制剂位点处成对苏氨酸的作用。具体而言,苏氨酸侧链羟基形成一个氢键网络,该网络能够轻松容纳小的、高度极性的配体取代基。相反,χ扭转角进行150 - 180°的直径旋转,可使侧链β - 甲基基团进入结合裂隙,形成一个能够容纳小的、非极性取代基的疏水口袋。已发现该基序对于合理化一组结构聚焦的p97抑制剂的亲和力至关重要,这些抑制剂的效力变化超过2000倍,且对小的、高度极性或小的、非极性基团有偏好。通过在PDB数据库中搜索,在蛋白激酶B(PKB)的配体相互作用中鉴定出类似的结合模式,并通过对NMR结构的分析证明相邻苏氨酸对之间存在额外的齿轮状相互作用,进一步验证了苏氨酸旋转门基序。综合这些数据表明,苏氨酸旋转门基序可能是蛋白质结合口袋中一个普遍感兴趣的特征。