Delan-Forino Clémentine, Schneider Claudia, Tollervey David
Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
PLoS Genet. 2017 Mar 29;13(3):e1006699. doi: 10.1371/journal.pgen.1006699. eCollection 2017 Mar.
The RNA exosome complex functions in both the accurate processing and rapid degradation of many classes of RNA. Functional and structural analyses indicate that RNA can either be threaded through the central channel of the exosome or more directly access the active sites of the ribonucleases Rrp44 and Rrp6, but it was unclear how many substrates follow each pathway in vivo. We used CRAC (UV crosslinking and analysis of cDNA) in growing cells to identify transcriptome-wide interactions of RNAs with the major nuclear exosome-cofactor Mtr4 and with individual exosome subunits (Rrp6, Csl4, Rrp41 and Rrp44) along the threaded RNA path. We compared exosome complexes lacking Rrp44 exonuclease activity, carrying a mutation in the Rrp44 S1 RNA-binding domain predicted to disfavor direct access, or with multiple mutations in Rrp41 reported to impede RNA access to the central channel in vitro. Preferential use of channel-threading was seen for mRNAs, 5S rRNA, scR1 (SRP) and aborted tRNAs transcripts. Conversely, pre-tRNAs preferentially accessed Rrp44 directly. Both routes participated in degradation and maturation of RNAPI transcripts, with hand-over during processing. Rrp41 mutations blocked substrate passage through the channel to Rrp44 only for cytoplasmic mRNAs, supporting the predicted widening of the lumen in the Rrp6-associated, nuclear complex. Many exosome substrates exhibited clear preferences for a specific path to Rrp44. Other targets showed redundancy, possibly allowing the efficient handling of highly diverse RNA-protein complexes and RNA structures. Both threading and direct access routes involve the RNA helicase Mtr4. mRNAs that are predominately nuclear or cytoplasmic exosome substrates can be distinguished in vivo.
RNA外切体复合物在多种RNA的精确加工和快速降解过程中发挥作用。功能和结构分析表明,RNA既可以穿过外切体的中央通道,也可以更直接地接触核糖核酸酶Rrp44和Rrp6的活性位点,但尚不清楚在体内有多少底物遵循每条途径。我们在生长的细胞中使用CRAC(紫外线交联和cDNA分析)来鉴定RNA与主要的核外切体辅因子Mtr4以及沿着穿线RNA路径的单个外切体亚基(Rrp6、Csl4、Rrp41和Rrp44)在全转录组范围内的相互作用。我们比较了缺乏Rrp44核酸外切酶活性、在Rrp44 S1 RNA结合结构域携带预测不利于直接接触的突变的外切体复合物,或在Rrp41中有多个据报道在体外会阻碍RNA进入中央通道的突变的外切体复合物。对于mRNA、5S rRNA、scR1(SRP)和流产的tRNA转录本,观察到优先使用通道穿线。相反,前体tRNA优先直接接触Rrp44。两条途径都参与了RNA聚合酶I转录本的降解和成熟,在加工过程中会进行交接。Rrp41突变仅阻止细胞质mRNA通过通道传递到底物Rrp44,这支持了与Rrp6相关的核复合物中管腔预测变宽的观点。许多外切体底物对通往Rrp44的特定路径表现出明显的偏好。其他靶标显示出冗余性,这可能允许有效地处理高度多样的RNA - 蛋白质复合物和RNA结构。穿线和直接接触途径都涉及RNA解旋酶Mtr4。在体内可以区分主要是核外切体底物或细胞质外切体底物的mRNA。