Nievas F, Vilchez L, Giordano W, Bogino P
Lab 11, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CP: 5800, Ruta 36 km 601, Río Cuarto, Córdoba, Argentina.
Antonie Van Leeuwenhoek. 2017 Jul;110(7):891-902. doi: 10.1007/s10482-017-0862-2. Epub 2017 Mar 29.
A wide variety of plant-associated soil bacteria (rhizobacteria) communicate with each other by quorum sensing (QS). Plants are able to detect and produce mimics and inhibitor molecules of the QS bacterial communicative process. Arachis hypogaea L. (peanut) establishes a nitrogen-fixing symbiosis with rhizobia belonging to the genus Bradyrhizobium. These bacteria use a QS mechanism dependent on the synthesis of N-acyl homoserine lactones (AHLs). Given the relevance that plant-rhizobacteria interactions have at the ecological level, this work addresses the involvement of peanut in taking part in the QS mechanism. By using biosensor bacterial strains capable of detecting AHLs, a series of standard and original bioassays were performed in order to determine both (i) the production of QS-like molecules in vegetal materials and (ii) the expression of the QS mechanism throughout plant-bacteria interaction. Mimic QS-like molecules (mQS) linked to AHLs with long acyl chains (lac-AHL), and inhibitor QS-like molecules (iQS) linked to AHLs with short acyl chains (sac-AHL) were detected in seed and root exudates. The results revealed that synthesis of specific signaling molecules by the plant (such as mQS and iQS) probably modulates the function and composition of the bacterial community established in its rhizosphere. Novel bioassays of QS detection during peanut-Bradyrhizobium interaction showed an intense production of QS signals in the contact zone between root and bacteria. It is demonstrated that root exudates stimulate the root colonization and synthesis of lac-AHL by Bradyrhizobium strains in the plant rhizosphere, which leads to the early stages of the development of beneficial plant-bacteria interactions.
各种各样与植物相关的土壤细菌(根际细菌)通过群体感应(QS)相互交流。植物能够检测并产生群体感应细菌交流过程的模拟物和抑制剂分子。落花生(花生)与属于慢生根瘤菌属的根瘤菌建立了固氮共生关系。这些细菌利用一种依赖于N-酰基高丝氨酸内酯(AHLs)合成的群体感应机制。鉴于植物-根际细菌相互作用在生态层面的相关性,这项工作探讨了花生参与群体感应机制的情况。通过使用能够检测AHLs的生物传感器细菌菌株,进行了一系列标准和原创性生物测定,以确定(i)植物材料中类群体感应分子的产生,以及(ii)在整个植物-细菌相互作用过程中群体感应机制的表达。在种子和根系分泌物中检测到了与长酰基链AHLs(lac-AHL)相关的模拟类群体感应分子(mQS)和与短酰基链AHLs(sac-AHL)相关的抑制类群体感应分子(iQS)。结果表明,植物合成的特定信号分子(如mQS和iQS)可能调节其根际建立的细菌群落的功能和组成。花生与慢生根瘤菌相互作用期间的新型群体感应检测生物测定表明,在根与细菌的接触区域强烈产生群体感应信号。结果表明,根系分泌物刺激了慢生根瘤菌菌株在植物根际的根定殖和lac-AHL的合成,这导致了有益植物-细菌相互作用发展的早期阶段。