Baris Tara Z, Wagner Dominique N, Dayan David I, Du Xiao, Blier Pierre U, Pichaud Nicolas, Oleksiak Marjorie F, Crawford Douglas L
Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America.
Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada.
PLoS Genet. 2017 Mar 31;13(3):e1006517. doi: 10.1371/journal.pgen.1006517. eCollection 2017 Mar.
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
氧化磷酸化(OxPhos)途径负责大多数需氧ATP的产生,并且是唯一同时具有核编码和线粒体编码蛋白质的途径。由于这两个基因组之间相互作用的潜在进化效应以及它们可能如何影响人类健康和疾病,最近它们之间相互作用的重要性受到了更多关注。在许多不同的生物体中,物种间或同一物种内远缘种群之间健康的核基因组和线粒体基因组杂交体会影响适应性和氧化磷酸化功能。然而,人们对这些相互作用是否会影响单个自然种群中的个体了解较少。这种影响的重要性取决于对线粒体-核相互作用的选择强度。我们研究了在一个包含两种不同线粒体单倍型(mt-单倍型)的单一自然异育银鲫种群中,线粒体-核相互作用是否会改变约11,000个核单核苷酸多态性(SNP)的等位基因频率。在这两种mt-单倍型之间,有349个SNP存在显著的核等位基因频率差异,p值为1%(236个在10%错误发现率下)。与基因组的其他部分不同,这349个异常SNP形成了与每种mt-单倍型相关的两组,少数个体具有混合血统。我们将这种混合血统与mt-单倍型结合起来作为一个多基因因素,以解释个体氧化磷酸化变异的很大一部分。这些数据表明线粒体-核相互作用会影响心脏氧化磷酸化功能。这349个异常SNP出现在参与调节代谢过程的基因中,但与79种核氧化磷酸化蛋白没有直接关联。因此,我们推测线粒体-核相互作用的进化通过在氧化磷酸化的上游起作用来影响氧化磷酸化功能。