Suppr超能文献

开发一种用于头颈鳞状细胞癌手术后结局审计的风险分层工具。

Developing a risk stratification tool for audit of outcome after surgery for head and neck squamous cell carcinoma.

作者信息

Tighe David F, Thomas Alan J, Sassoon Isabel, Kinsman Robin, McGurk Mark

机构信息

Royal Marsden NHS Foundation Trust, London, London, United Kingdom.

University of Brighton, School of Computer Engineering and Mathematics, Brighton, East Sussex, United Kingdom.

出版信息

Head Neck. 2017 Jul;39(7):1357-1363. doi: 10.1002/hed.24769. Epub 2017 Mar 29.

Abstract

BACKGROUND

Patients treated surgically for head and neck squamous cell carcinoma (HNSCC) represent a heterogeneous group. Adjusting for patient case mix and complexity of surgery is essential if reporting outcomes represent surgical performance and quality of care.

METHODS

A case note audit totaling 1075 patients receiving 1218 operations done for HNSCC in 4 cancer networks was completed. Logistic regression, decision tree analysis, an artificial neural network, and Naïve Bayes Classifier were used to adjust for patient case-mix using pertinent preoperative variables.

RESULTS

Thirty-day complication rates varied widely (34%-51%; P < .015) between units. The predictive models allowed risk stratification. The artificial neural network demonstrated the best predictive performance (area under the curve [AUC] 0.85).

CONCLUSION

Early postoperative complications are a measurable outcome that can be used to benchmark surgical performance and quality of care. Surgical outcome reporting in national clinical audits should be taking account of the patient case mix.

摘要

背景

接受手术治疗的头颈部鳞状细胞癌(HNSCC)患者构成一个异质性群体。如果报告的结果要反映手术表现和护理质量,那么对患者病例组合和手术复杂性进行调整至关重要。

方法

完成了一项病例记录审核,共涉及4个癌症网络中1075例接受1218次HNSCC手术的患者。使用逻辑回归、决策树分析、人工神经网络和朴素贝叶斯分类器,通过相关术前变量对患者病例组合进行调整。

结果

各单位之间的30天并发症发生率差异很大(34% - 51%;P < 0.015)。预测模型实现了风险分层。人工神经网络表现出最佳的预测性能(曲线下面积[AUC]为0.85)。

结论

术后早期并发症是一个可衡量的结果,可用于对标手术表现和护理质量。国家临床审计中的手术结果报告应考虑患者病例组合。

相似文献

1
Developing a risk stratification tool for audit of outcome after surgery for head and neck squamous cell carcinoma.
Head Neck. 2017 Jul;39(7):1357-1363. doi: 10.1002/hed.24769. Epub 2017 Mar 29.
2
Validating a benchmarking tool for audit of early outcomes after operations for head and neck cancer.
Ann R Coll Surg Engl. 2017 Apr;99(4):299-306. doi: 10.1308/rcsann.2016.0319. Epub 2016 Dec 5.
3
Identification of appropriate outcome indices in head and neck cancer and factors influencing them.
Int J Oral Maxillofac Surg. 2014 Sep;43(9):1047-53. doi: 10.1016/j.ijom.2014.03.010. Epub 2014 Apr 4.
4
Is benchmarking possible in audit of early outcomes after operations for head and neck cancer?
Br J Oral Maxillofac Surg. 2014 Dec;52(10):913-21. doi: 10.1016/j.bjoms.2014.08.020. Epub 2014 Sep 15.
5
Case-mix adjustment in audit of length of hospital stay in patients operated on for cancer of the head and neck.
Br J Oral Maxillofac Surg. 2019 Nov;57(9):866-872. doi: 10.1016/j.bjoms.2019.07.007. Epub 2019 Jul 25.
6
Validating a risk stratification tool for audit of early outcome after operations for squamous cell carcinoma of the head and neck.
Br J Oral Maxillofac Surg. 2019 Nov;57(9):873-879. doi: 10.1016/j.bjoms.2019.07.008. Epub 2019 Jul 26.
8
Utility of the Surgical Apgar Score in Head and Neck Squamous Cell Carcinoma.
Otolaryngol Head Neck Surg. 2018 Sep;159(3):466-472. doi: 10.1177/0194599818767626. Epub 2018 Jun 5.
9
Factors Associated with Recurrence and Regional Adenopathy for Head and Neck Cutaneous Squamous Cell Carcinoma.
Otolaryngol Head Neck Surg. 2017 May;156(5):863-869. doi: 10.1177/0194599817697053. Epub 2017 Mar 21.

引用本文的文献

1
Surgical Complications for Oral Cavity Cancer: Evaluating Hospital Performance.
Laryngoscope. 2025 Jul;135(7):2411-2419. doi: 10.1002/lary.32033. Epub 2025 Feb 6.
2
Best Practice in Surgical Treatment of Malignant Head and Neck Tumors.
Front Oncol. 2020 Feb 12;10:140. doi: 10.3389/fonc.2020.00140. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验