Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6133, USA.
Energy & Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Sci Rep. 2017 Apr 3;7(1):560. doi: 10.1038/s41598-017-00577-y.
New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.
新的便捷湿化学合成路线使得探索各种单原子的催化活性成为可能,然而,惰性基底(如氧化铝)上的单原子仅限于 Pt、Pd 和 Ru 的原子和阳离子。此前,我们发现单原子 Pt 是出色的 NO 氧化催化剂。相比之下,我们报告 Pd 单原子对 NO 氧化完全没有活性。漫反射红外光谱(DRIFTS)结果表明催化剂上没有硝酸盐形成。为了解释这些结果,我们探索了针对单原子上氧化反应提出的改良 Langmuir-Hinshelwood 型途径。在第一条途径中,我们发现释放 NO 的能量屏障阻止了 NO 的氧化。在第二条途径中,我们的结果表明,在单原子 Pd 上形成 O=N-O-O 中间物或硝酸盐没有驱动力。如果形成硝酸盐,其分解是一个吸热事件。