Suppr超能文献

定义天然自上而下质谱法中完整蛋白质的气相断裂倾向。

Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry.

机构信息

Department of Chemistry and Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.

出版信息

J Am Soc Mass Spectrom. 2017 Jun;28(6):1203-1215. doi: 10.1007/s13361-017-1635-x. Epub 2017 Apr 3.

Abstract

Fragmentation of intact proteins in the gas phase is influenced by amino acid composition, the mass and charge of precursor ions, higher order structure, and the dissociation technique used. The likelihood of fragmentation occurring between a pair of residues is referred to as the fragmentation propensity and is calculated by dividing the total number of assigned fragmentation events by the total number of possible fragmentation events for each residue pair. Here, we describe general fragmentation propensities when performing top-down mass spectrometry (TDMS) using denaturing or native electrospray ionization. A total of 5311 matched fragmentation sites were collected for 131 proteoforms that were analyzed over 165 experiments using native top-down mass spectrometry (nTDMS). These data were used to determine the fragmentation propensities for 399 residue pairs. In comparison to denatured top-down mass spectrometry (dTDMS), the fragmentation pathways occurring either N-terminal to proline or C-terminal to aspartic acid were even more enhanced in nTDMS compared with other residues. More generally, 257/399 (64%) of the fragmentation propensities were significantly altered (P ≤ 0.05) when using nTDMS compared with dTDMS, and of these, 123 were altered by 2-fold or greater. The most notable enhancements of fragmentation propensities for TDMS in native versus denatured mode occurred (1) C-terminal to aspartic acid, (2) between phenylalanine and tryptophan (F|W), and (3) between tryptophan and alanine (W|A). The fragmentation propensities presented here will be of high value in the development of tailored scoring systems used in nTDMS of both intact proteins and protein complexes. Graphical Abstract ᅟ.

摘要

在气相中,完整蛋白质的碎片化受到氨基酸组成、前体离子的质量和电荷、高级结构以及所使用的解离技术的影响。两个残基之间发生碎片化的可能性称为碎片化倾向,通过将分配的碎片化事件总数除以每个残基对的可能碎片化事件总数来计算。在这里,我们描述了使用变性或天然电喷雾电离进行自上而下质谱(TDMS)时的一般碎片化倾向。对使用天然自上而下质谱(nTDMS)分析的 131 个蛋白水解物进行了 165 次实验,共收集到 5311 个匹配的碎片化位点。这些数据用于确定 399 个残基对的碎片化倾向。与变性自上而下质谱(dTDMS)相比,在 nTDMS 中,无论是脯氨酸 N 端还是天冬氨酸 C 端发生的碎片化途径与其他残基相比都得到了更大的增强。更一般地说,与 dTDMS 相比,在使用 nTDMS 时,64%(257/399)的碎片化倾向发生了显著改变(P ≤ 0.05),其中 123 个改变了 2 倍或更多。在天然与变性模式下,TDMS 的碎片化倾向的最显著增强发生在(1)天冬氨酸 C 端,(2)苯丙氨酸和色氨酸(F|W)之间,以及(3)色氨酸和丙氨酸(W|A)之间。这里提出的碎片化倾向将在天然 nTDMS 中完整蛋白质和蛋白质复合物的定制评分系统的开发中具有很高的价值。

相似文献

1
Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry.
J Am Soc Mass Spectrom. 2017 Jun;28(6):1203-1215. doi: 10.1007/s13361-017-1635-x. Epub 2017 Apr 3.
2
Using 10,000 Fragment Ions to Inform Scoring in Native Top-down Proteomics.
J Am Soc Mass Spectrom. 2020 Jul 1;31(7):1398-1409. doi: 10.1021/jasms.0c00026. Epub 2020 Jun 24.
3
Characterization of a Monoclonal Antibody by Native and Denaturing Top-Down Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 Sep 4;35(9):2197-2208. doi: 10.1021/jasms.4c00224. Epub 2024 Aug 6.
4
Maximizing Selective Cleavages at Aspartic Acid and Proline Residues for the Identification of Intact Proteins.
J Am Soc Mass Spectrom. 2019 Jan;30(1):34-44. doi: 10.1007/s13361-018-1965-3. Epub 2018 Apr 30.
6
Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches.
J Am Soc Mass Spectrom. 2019 Jul;30(7):1149-1157. doi: 10.1007/s13361-019-02201-x. Epub 2019 May 9.
7
Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics.
Acc Chem Res. 2022 Jul 19;55(14):1928-1937. doi: 10.1021/acs.accounts.2c00216. Epub 2022 Jun 24.

引用本文的文献

1
Native ambient mass spectrometry of membrane proteins directly from bacterial colonies.
Chem Commun (Camb). 2025 Mar 6;61(21):4168-4171. doi: 10.1039/d4cc03881a.
2
A Conformation-Specific Approach to Native Top-down Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 Dec 4;35(12):3203-3213. doi: 10.1021/jasms.4c00361. Epub 2024 Oct 25.
3
Panda-UV Unlocks Deeper Protein Characterization with Internal Fragments in Ultraviolet Photodissociation Mass Spectrometry.
Anal Chem. 2024 May 28;96(21):8474-8483. doi: 10.1021/acs.analchem.4c00253. Epub 2024 May 13.
4
Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G Protein-Coupled Receptors.
Angew Chem Weinheim Bergstr Ger. 2023 Sep 4;135(36):e202305694. doi: 10.1002/ange.202305694. Epub 2023 Jul 25.
5
Immunocomplexed Antigen Capture and Identification by Native Top-Down Mass Spectrometry.
J Am Soc Mass Spectrom. 2023 Oct 4;34(10):2093-2097. doi: 10.1021/jasms.3c00235. Epub 2023 Sep 8.
6
Fragment Ion Abundance Reveals Information about Structure and Charge Localization in Highly Charged Proteins.
J Am Soc Mass Spectrom. 2023 Aug 2;34(8):1778-1788. doi: 10.1021/jasms.3c00196. Epub 2023 Jul 21.
7
ProSight Native: Defining Protein Complex Composition from Native Top-Down Mass Spectrometry Data.
J Proteome Res. 2023 Aug 4;22(8):2660-2668. doi: 10.1021/acs.jproteome.3c00171. Epub 2023 Jul 12.
8
Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G Protein-Coupled Receptors.
Angew Chem Int Ed Engl. 2023 Sep 4;62(36):e202305694. doi: 10.1002/anie.202305694. Epub 2023 Jul 25.
9
193 nm Ultraviolet Photodissociation for the Characterization of Singly Charged Proteoforms Generated by MALDI.
J Am Soc Mass Spectrom. 2023 Feb 1;34(2):328-332. doi: 10.1021/jasms.2c00302. Epub 2023 Jan 9.
10
Free Radical-Based Sequencing for Native Top-Down Mass Spectrometry.
J Am Soc Mass Spectrom. 2022 Dec 7;33(12):2283-2290. doi: 10.1021/jasms.2c00252. Epub 2022 Nov 8.

本文引用的文献

1
Progress in Top-Down Proteomics and the Analysis of Proteoforms.
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):499-519. doi: 10.1146/annurev-anchem-071015-041550.
2
Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.
J Am Soc Mass Spectrom. 2016 Jun;27(6):975-90. doi: 10.1007/s13361-016-1375-3. Epub 2016 Apr 6.
3
Unfolding and Folding of the Three-Helix Bundle Protein KIX in the Absence of Solvent.
J Am Soc Mass Spectrom. 2016 Jun;27(6):1079-88. doi: 10.1007/s13361-016-1363-7. Epub 2016 Mar 2.
4
Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa.
J Proteome Res. 2016 Mar 4;15(3):976-82. doi: 10.1021/acs.jproteome.5b00997. Epub 2016 Feb 11.
5
An informatic framework for decoding protein complexes by top-down mass spectrometry.
Nat Methods. 2016 Mar;13(3):237-40. doi: 10.1038/nmeth.3731. Epub 2016 Jan 18.
6
Online Hydrophobic Interaction Chromatography-Mass Spectrometry for Top-Down Proteomics.
Anal Chem. 2016 Feb 2;88(3):1885-91. doi: 10.1021/acs.analchem.5b04285. Epub 2016 Jan 14.
7
Probing Asymmetric Charge Partitioning of Protein Oligomers during Tandem Mass Spectrometry.
Int J Mass Spectrom. 2015 Nov 15;390:132-136. doi: 10.1016/j.ijms.2015.08.021.
8
Ion Activation Methods for Peptides and Proteins.
Anal Chem. 2016 Jan 5;88(1):30-51. doi: 10.1021/acs.analchem.5b04563. Epub 2015 Dec 11.
10
ProSight Lite: graphical software to analyze top-down mass spectrometry data.
Proteomics. 2015 Apr;15(7):1235-8. doi: 10.1002/pmic.201570050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验