Suppr超能文献

利用电子转移解离进行选择性自由基生成:用于肽差向异构体分析的应用。

Leveraging Electron Transfer Dissociation for Site Selective Radical Generation: Applications for Peptide Epimer Analysis.

机构信息

Department of Chemistry, University of California-Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.

出版信息

J Am Soc Mass Spectrom. 2017 Jul;28(7):1365-1373. doi: 10.1007/s13361-017-1627-x. Epub 2017 Apr 3.

Abstract

Traditional electron-transfer dissociation (ETD) experiments operate through a complex combination of hydrogen abundant and hydrogen deficient fragmentation pathways, yielding c and z ions, side-chain losses, and disulfide bond scission. Herein, a novel dissociation pathway is reported, yielding homolytic cleavage of carbon-iodine bonds via electronic excitation. This observation is very similar to photodissociation experiments where homolytic cleavage of carbon-iodine bonds has been utilized previously, but ETD activation can be performed without addition of a laser to the mass spectrometer. Both loss of iodine and loss of hydrogen iodide are observed, with the abundance of the latter product being greatly enhanced for some peptides after additional collisional activation. These observations suggest a novel ETD fragmentation pathway involving temporary storage of the electron in a charge-reduced arginine side chain. Subsequent collisional activation of the peptide radical produced by loss of HI yields spectra dominated by radical-directed dissociation, which can be usefully employed for identification of peptide isomers, including epimers. Graphical Abstract ᅟ.

摘要

传统的电子转移解离(ETD)实验通过富含氢和氢不足的碎片途径的复杂组合进行,生成 c 和 z 离子、侧链损失和二硫键断裂。在此,报道了一种新的解离途径,通过电子激发产生碳-碘键的均裂裂解。这种观察结果与光解实验非常相似,先前已经利用光解实验中碳-碘键的均裂裂解,但无需向质谱仪中添加激光即可进行 ETD 活化。观察到碘的损失和碘化氢的损失,对于一些肽,在额外的碰撞激活后,后者产物的丰度大大增加。这些观察结果表明涉及在带电荷减少的精氨酸侧链中临时存储电子的新型 ETD 断裂途径。随后通过 HI 的损失产生的肽自由基的碰撞激活产生以自由基定向解离为主的谱图,这可用于鉴定肽异构体,包括差向异构体。图摘要。

相似文献

1
Leveraging Electron Transfer Dissociation for Site Selective Radical Generation: Applications for Peptide Epimer Analysis.
J Am Soc Mass Spectrom. 2017 Jul;28(7):1365-1373. doi: 10.1007/s13361-017-1627-x. Epub 2017 Apr 3.
2
Dissociation chemistry of hydrogen-deficient radical peptide anions.
J Am Soc Mass Spectrom. 2012 Mar;23(3):460-8. doi: 10.1007/s13361-011-0318-2. Epub 2011 Dec 30.
3
RDD-HCD Provides Variable Fragmentation Routes Dictated by Radical Stability.
J Am Soc Mass Spectrom. 2023 Mar 1;34(3):452-458. doi: 10.1021/jasms.2c00326. Epub 2023 Feb 14.
4
Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods.
J Am Soc Mass Spectrom. 2016 Dec;27(12):2041-2053. doi: 10.1007/s13361-016-1487-9. Epub 2016 Sep 9.
7
Radical-driven peptide backbone dissociation tandem mass spectrometry.
Mass Spectrom Rev. 2015 Mar-Apr;34(2):116-32. doi: 10.1002/mas.21426. Epub 2014 May 26.
9
Combining UV photodissociation with electron transfer for peptide structure analysis.
J Mass Spectrom. 2015 Mar;50(3):470-5. doi: 10.1002/jms.3551.
10
Efficient Isothiocyanate Modification of Peptides Facilitates Structural Analysis by Radical-Directed Dissociation.
J Am Soc Mass Spectrom. 2022 Aug 3;33(8):1338-1345. doi: 10.1021/jasms.1c00237. Epub 2021 Oct 20.

引用本文的文献

本文引用的文献

1
Old Proteins in Man: A Field in its Infancy.
Trends Biochem Sci. 2016 Aug;41(8):654-664. doi: 10.1016/j.tibs.2016.06.004. Epub 2016 Jul 11.
3
Strategies for generating peptide radical cations via ion/ion reactions.
J Mass Spectrom. 2015 Feb;50(2):418-26. doi: 10.1002/jms.3548.
4
Identification of amino acid epimerization and isomerization in crystallin proteins by tandem LC-MS.
Anal Chem. 2014 Oct 7;86(19):9733-41. doi: 10.1021/ac502296c. Epub 2014 Sep 16.
5
Bond-specific dissociation following excitation energy transfer for distance constraint determination in the gas phase.
J Am Chem Soc. 2014 Sep 24;136(38):13363-70. doi: 10.1021/ja507215q. Epub 2014 Sep 11.
6
Site-specific characterization of (D)-amino acid containing peptide epimers by ion mobility spectrometry.
Anal Chem. 2014 Mar 18;86(6):2972-81. doi: 10.1021/ac4033824. Epub 2014 Jan 3.
7
Peptide radicals and cation radicals in the gas phase.
Chem Rev. 2013 Aug 14;113(8):6691-733. doi: 10.1021/cr400043s. Epub 2013 May 7.
9
Photoinitiated intramolecular diradical cross-linking of polyproline peptides in the gas phase.
Phys Chem Chem Phys. 2012 Dec 21;14(47):16243-9. doi: 10.1039/c2cp42242e. Epub 2012 Oct 31.
10
Novel Cβ-Cγ bond cleavages of tryptophan-containing peptide radical cations.
J Am Soc Mass Spectrom. 2012 Feb;23(2):264-73. doi: 10.1007/s13361-011-0295-5. Epub 2011 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验