Villarroya Olga, Ballestín Raúl, López-Hidalgo Rosa, Mulet Maria, Blasco-Ibáñez José Miguel, Crespo Carlos, Nacher Juan, Gilabert-Juan Javier, Varea Emilio
Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de València, Valencia, Spain.
Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
Histol Histopathol. 2018 Jan;33(1):101-115. doi: 10.14670/HH-11-894. Epub 2017 Apr 4.
Down syndrome (DS) is the most common chromosomal aneuploidy. Although trisomy on chromosome 21 can display variable phenotypes, there is a common feature among all DS individuals: the presence of intellectual disability. This condition is partially attributed to abnormalities found in the hippocampus of individuals with DS and in the murine model for DS, Ts65Dn. To check if all hippocampal areas were equally affected in 4-5 month adult Ts65Dn mice, we analysed the morphology of dentate gyrus granule cells and cornu ammonis pyramidal neurons using Sholl method on Golgi-Cox impregnated neurons. Structural plasticity has been analysed using immunohistochemistry for plasticity molecules followed by densitometric analysis (Brain Derived Neurotrophic Factor (BDNF), Polysialylated form of the Neural Cell Adhesion Molecule (PSA-NCAM) and the Growth Associated Protein 43 (GAP43)). We observed an impairment in the dendritic arborisation of granule cells, but not in the pyramidal neurons in the Ts65Dn mice. When we analysed the expression of molecules related to structural plasticity in trisomic mouse hippocampus, we observed a reduction in the expression of BDNF and PSA-NCAM, and an increment in the expression of GAP43. These alterations were restricted to the regions related to dentate granule cells suggesting an interrelation. Therefore the impairment in dendritic arborisation and molecular plasticity is not a general feature of all Down syndrome principal neurons. Pharmacological manipulations of the levels of plasticity molecules could provide a way to restore granule cell morphology and function.
唐氏综合征(DS)是最常见的染色体非整倍体疾病。尽管21号染色体三体可表现出多种不同的表型,但所有唐氏综合征患者都有一个共同特征:存在智力障碍。这种情况部分归因于唐氏综合征患者海马体以及唐氏综合征小鼠模型Ts65Dn中发现的异常。为了检查4 - 5月龄成年Ts65Dn小鼠的所有海马区域是否受到同等程度的影响,我们使用Sholl方法对高尔基-考克斯(Golgi-Cox)染色的神经元分析了齿状回颗粒细胞和海马角锥体神经元的形态。通过对可塑性分子进行免疫组织化学检测,随后进行光密度分析(脑源性神经营养因子(BDNF)、神经细胞黏附分子的多唾液酸化形式(PSA-NCAM)和生长相关蛋白43(GAP43))来分析结构可塑性。我们观察到Ts65Dn小鼠颗粒细胞的树突分支受损,但锥体神经元未受损。当我们分析三体小鼠海马体中与结构可塑性相关分子的表达时,我们观察到BDNF和PSA-NCAM的表达降低,而GAP43的表达增加。这些改变仅限于与齿状颗粒细胞相关的区域,提示存在相互关系。因此,树突分支和分子可塑性的损伤并非所有唐氏综合征主要神经元的普遍特征。对可塑性分子水平进行药理学操作可能为恢复颗粒细胞形态和功能提供一种方法。