Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; email:
Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303 email:
Annu Rev Biophys. 2017 May 22;46:357-377. doi: 10.1146/annurev-biophys-062215-011256. Epub 2017 Mar 22.
Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.
端粒是一种特殊的染色质结构,可保护染色体末端免受危险的处理事件的影响。在大多数组织中,端粒在每次细胞分裂时都会缩短,从而对细胞生长施加了有限的限制。在快速分裂的细胞中,包括大多数人类癌症,细胞通过端粒酶催化的端粒长度维持来绕过这种生长限制。端粒和端粒酶的动态特性使得使用组合生化和结构技术难以研究它们。这篇综述描述了使用单分子方法研究端粒和端粒酶的各个成分如何有助于功能的方法。单分子方法通过允许研究人员直接可视化和操作端粒功能所需的单个蛋白质、DNA 和 RNA 分子,为研究端粒和端粒酶的复杂性质提供了一个窗口。本文综述的工作强调了如何利用单分子技术来研究端粒和端粒酶的功能。