U.S. Geological Survey, National Research Program, Denver Federal Center, MS413, Denver, Colorado, 80225, USA.
National Research Program, U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado, 80303, USA.
Ecol Appl. 2017 Jul;27(5):1403-1420. doi: 10.1002/eap.1552.
The magnitude of Alaska (AK) inland waters carbon (C) fluxes is likely to change in the future due to amplified climate warming impacts on the hydrology and biogeochemical processes in high latitude regions. Although current estimates of major aquatic C fluxes represent an essential baseline against which future change can be compared, a comprehensive assessment for AK has not yet been completed. To address this gap, we combined available data sets and applied consistent methodologies to estimate river lateral C export to the coast, river and lake carbon dioxide (CO ) and methane (CH ) emissions, and C burial in lakes for the six major hydrologic regions in the state. Estimated total aquatic C flux for AK was 41 Tg C/yr. Major components of this total flux, in Tg C/yr, were 18 for river lateral export, 17 for river CO emissions, and 8 for lake CO emissions. Lake C burial offset these fluxes by 2 Tg C/yr. River and lake CH emissions were 0.03 and 0.10 Tg C/yr, respectively. The Southeast and South central regions had the highest temperature, precipitation, terrestrial net primary productivity (NPP), and C yields (fluxes normalized to land area) were 77 and 42 g C·m ·yr , respectively. Lake CO emissions represented over half of the total aquatic flux from the Southwest (37 g C·m ·yr ). The North Slope, Northwest, and Yukon regions had lesser yields (11, 15, and 17 g C·m ·yr ), but these estimates may be the most vulnerable to future climate change, because of the heightened sensitivity of arctic and boreal ecosystems to intensified warming. Total aquatic C yield for AK was 27 g C·m ·yr , which represented 16% of the estimated terrestrial NPP. Freshwater ecosystems represent a significant conduit for C loss, and a more comprehensive view of land-water-atmosphere interactions is necessary to predict future climate change impacts on the Alaskan ecosystem C balance.
阿拉斯加(AK)内陆水域碳(C)通量的大小在未来可能会发生变化,因为气候变暖对高纬度地区的水文和生物地球化学过程的影响加剧。尽管当前对主要水生 C 通量的估计代表了未来变化可以比较的基本基准,但尚未完成对 AK 的全面评估。为了解决这一差距,我们结合了可用数据集并应用了一致的方法来估计河流侧向 C 向海岸的输出、河流和湖泊二氧化碳(CO )和甲烷(CH )排放以及湖泊中的 C 埋藏,以评估该州六个主要水文区的情况。估计 AK 的总水生 C 通量为 41TgC/yr。该总通量的主要组成部分(以 TgC/yr 计)为 18 为河流侧向输出,17 为河流 CO 排放,8 为湖泊 CO 排放。湖泊 C 埋藏抵消了这些通量,每年 2TgC/yr。河流和湖泊 CH 排放分别为 0.03 和 0.10TgC/yr。东南和中南地区的温度、降水、陆地净初级生产力(NPP)最高,C 产量(通量归一化为陆地面积)分别为 77 和 42gC·m·yr。湖泊 CO 排放占西南地区(37gC·m·yr )总水生通量的一半以上。北坡、西北和育空地区的产量较低(11、15 和 17gC·m·yr ),但由于北极和北方森林生态系统对变暖加剧的敏感性增强,这些估计值可能最容易受到未来气候变化的影响。AK 的总水生 C 产量为 27gC·m·yr ,占估计陆地 NPP 的 16%。淡水生态系统是 C 损失的重要渠道,需要更全面地了解陆地-水-气相互作用,以预测未来气候变化对阿拉斯加生态系统 C 平衡的影响。