Suppr超能文献

具有微界面障碍衍生可调热绝缘和阻燃性的飞重 3D 石墨烯支架。

Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and Flame Retardancy.

机构信息

School of Civil Engineering and Mechanics, Lanzhou University , Lanzhou 730000, P. R. China.

Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, The Ministry of Education of China , Lanzhou 730000, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14232-14241. doi: 10.1021/acsami.7b01697. Epub 2017 Apr 14.

Abstract

In this article, flyweight three-dimensional (3D) graphene scaffolds (GSs) have been demonstrated with a microinterface barrier-derived thermal insulation and flame retardancy characteristics. Such 3D GSs were fabricated by a modified hydrothermal method and a unidirectional freeze-casting process with hierarchical porous microstructures. Because of high porosity (99.9%), significant phonon scattering, and strong π-π interaction at the interface barriers of multilayer graphene cellular walls, the GSs demonstrate a sequence of multifunctional properties simultaneously, such as lightweight density, thermal insulating characteristics, and outstanding mechanical robustness. At 100 °C, oxidized GSs exhibit a thermal conductivity of 0.0126 ± 0.0010 W/(m K) in vacuum. The thermal conductivity of oxidized GSs remains relatively unaffected despite large-scale deformation-induced densification of the microstructures, as compared to the behavior of reduced GSs (rGSs) whose thermal conductivity increases dramatically under compression. The contrasting behavior of oxidized GSs and rGSs appears to derive from large differences in the intersheet contact resistance and varying intrinsic thermal conductivity between reduced and oxidized graphene sheets. The oxidized GSs also exhibit excellent flame retardant behavior and mechanical robustness, with only 2% strength decay after flame treatment. In a broader context, this work demonstrates a useful strategy to design porous nanomaterials with a tunable heat conduction behavior through interface engineering at the nanoscale.

摘要

本文展示了具有微界面障碍衍生的隔热和阻燃特性的飞重三维(3D)石墨烯支架(GS)。这种 3D GS 是通过改进的水热法和具有分层多孔微结构的单向冷冻铸造工艺制造的。由于高孔隙率(99.9%)、显著的声子散射以及多层石墨烯蜂窝壁界面处的强 π-π 相互作用,GS 同时表现出一系列多功能特性,例如低密度、隔热特性和出色的机械强度。在 100°C 下,氧化 GS 在真空中的导热系数为 0.0126 ± 0.0010 W/(m K)。与 rGS 相比,氧化 GS 的导热系数在大规模变形导致微观结构致密化时相对不受影响,rGS 的导热系数在压缩下会急剧增加。氧化 GS 和 rGS 的相反行为似乎源于还原和氧化石墨烯片之间的片间接触电阻和固有导热系数的巨大差异。氧化 GS 还表现出优异的阻燃性能和机械强度,经过火焰处理后仅强度下降 2%。更广泛地说,这项工作通过纳米尺度的界面工程展示了一种设计具有可调热传导行为的多孔纳米材料的有用策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验