Martin G, Bhuyan M, Troles J, D'Amico C, Stoian R, Le Coarer E
Opt Express. 2017 Apr 3;25(7):8386-8397. doi: 10.1364/OE.25.008386.
Guided optics spectrometers can be essentially classified into two main families: based on Fourier transform or dispersion. In the first case, an interferogram generated inside an optical waveguide and containing the spectral information is sampled using spatially distributed nanodetectors. These scatter quasi-non-perturbingly light into the detector that is in contact with the waveguide, helping to reconstruct the stationary wave. A dedicated FFT processing is needed in order to recover the spectrum with high resolution but limited spectral range. Another way is to directly disperse the different wavelengths to different pixels, either introducing differential optical path in the same propagation plane (multiple Mach-Zehnder interferometers or Arrayed Waveguides Gratings), or using a periodic structure to perpendicularly extract the optical signal confined in a waveguide (photonic crystals or surface gratings), and by means of a relay optics, generate the spectrum on the Fourier plane of the lens, where the detector is placed. Following this second approach, we present a laser-fabricated high-resolution compact dispersive spectro-interferometer (R>2500, 30nm spectral range at λ = 1560nm), using four parallel waveguides that can provide up to three non-redundant interferometric combinations. The device is based on guided optics technology embedded in bulk optical glass. Ultrafast laser photoinscription with 3D laser index engineering in bulk chalcogenide Gallium Lanthanium Sulfide glass is utilized to fabricate large mode area waveguides in an evanescently-coupled hexagonal multicore array configuration, followed by subsequent realization of nanoscaled scattering centers via one dimensional nanovoids across the waveguide, written in a non-diffractive Bessel configuration. A simple relay optics, with limited optical aberrations, reimages the diffracted signal on the focal plane array, leading to a robust, easy to align instrument.
基于傅里叶变换的和基于色散的。在第一种情况下,利用空间分布的纳米探测器对在光波导内产生并包含光谱信息的干涉图进行采样。这些探测器将光以准非扰动的方式散射到与波导接触的探测器中,有助于重建驻波。为了以高分辨率恢复光谱但光谱范围有限,需要进行专用的快速傅里叶变换(FFT)处理。另一种方法是将不同波长直接色散到不同像素上,要么在同一传播平面内引入差分光路(多马赫-曾德尔干涉仪或阵列波导光栅),要么使用周期性结构垂直提取限制在波导中的光信号(光子晶体或表面光栅),并通过中继光学系统在放置探测器的透镜的傅里叶平面上生成光谱。按照第二种方法,我们展示了一种激光制造的高分辨率紧凑型色散光谱干涉仪(在λ = 1560nm时分辨率R>2500,光谱范围30nm),它使用四个平行波导,可提供多达三种非冗余干涉组合。该器件基于嵌入块状光学玻璃中的导波光学技术。利用超快激光光写入技术和块状硫系镓镧硫化物玻璃中的三维激光折射率工程,在渐逝耦合的六边形多芯阵列配置中制造大模面积波导,随后通过横跨波导的一维纳米空洞实现纳米级散射中心,这些纳米空洞以非衍射贝塞尔配置写入。一个具有有限光学像差的简单中继光学系统将衍射信号重新成像在焦平面阵列上,从而得到一个坚固且易于对准的仪器。