Suppr超能文献

基于孕妇特征和平均动脉压的简单方法用于预测妊娠早期子痫前期。

Simple approach based on maternal characteristics and mean arterial pressure for the prediction of preeclampsia in the first trimester of pregnancy.

作者信息

Rocha Rebeca Silveira, Alves Júlio Augusto Gurgel, Maia E Holanda Moura Sammya Bezerra, Araujo Júnior Edward, Peixoto Alberto Borges, Santana Eduardo Félix Martins, Martins Wellington P, Vasconcelos Camila Teixeira Moreira, Da Silva Costa Fabricio, Oriá Mônica Oliveira Batista

机构信息

.

出版信息

J Perinat Med. 2017 Oct 26;45(7):843-849. doi: 10.1515/jpm-2016-0418.

Abstract

AIM

To propose a simple model for predicting preeclampsia (PE) in the 1st trimester of pregnancy on the basis of maternal characteristics (MC) and mean arterial pressure (MAP).

METHODS

A prospective cohort was performed to predict PE between 11 and 13+6 weeks of gestation. The MC evaluated were maternal age, skin color, parity, previous PE, smoking, family history of PE, hypertension, diabetes mellitus and body mass index (BMI). Mean arterial blood pressure (MAP) was measured at the time of the 1st trimester ultrasound. The outcome measures were the incidences of total PE, preterm PE (delivery <37 weeks) and term PE (delivery ≥37 weeks). We performed logistic regression analysis to determine which factors made significant contributions for the prediction of the three outcomes.

RESULTS

We analyzed 733 pregnant women; 55 developed PE, 21 of those developed preterm PE and 34 term PE. For total PE, the best model was MC+MAP, which had an area under the receiver operating characteristic curve (AUC ROC) of 0.79 [95% confidence interval (CI)=0.76-0.82]. For preterm PE, the best model was MC+MAP, with an AUC ROC of 0.84 (95% CI=0.81-0.87). For term PE, the best model was MC, with an AUC ROC of 0.75 (0.72-0.79). The MC+MAP model demonstrated a detection rate of 67% cases of preterm PE, with a false-positive rate of 10%, positive predictive value of 17% and negative predictive value of 99%.

CONCLUSION

The MC+MAP model showed good accuracy in predicting preterm PE in the 1st trimester of gestation.

摘要

目的

基于孕妇特征(MC)和平均动脉压(MAP)提出一种在妊娠早期预测子痫前期(PE)的简单模型。

方法

进行一项前瞻性队列研究以预测妊娠11至13⁺⁶周时的PE。评估的MC包括孕妇年龄、肤色、产次、既往PE史、吸烟、PE家族史、高血压、糖尿病和体重指数(BMI)。在孕早期超声检查时测量平均动脉血压(MAP)。结局指标为总PE、早产PE(分娩<37周)和足月PE(分娩≥37周)的发生率。我们进行逻辑回归分析以确定哪些因素对三种结局的预测有显著贡献。

结果

我们分析了733名孕妇;55人发生PE,其中21人发生早产PE,34人发生足月PE。对于总PE,最佳模型是MC + MAP,其受试者工作特征曲线下面积(AUC ROC)为0.79 [95%置信区间(CI)=0.76 - 0.82]。对于早产PE,最佳模型是MC + MAP,AUC ROC为0.84(95% CI = 0.81 - 0.87)。对于足月PE,最佳模型是MC,AUC ROC为0.75(0.72 - 0.79)。MC + MAP模型显示早产PE病例的检出率为67%,假阳性率为10%,阳性预测值为17%,阴性预测值为99%。

结论

MC + MAP模型在妊娠早期预测早产PE方面显示出良好的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验