Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25/3, A-6020 Innsbruck, Austria.
Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, Orsay, France.
J Chem Phys. 2017 Mar 28;146(12):124310. doi: 10.1063/1.4978475.
We present quantum calculations for the inelastic collisions between H molecules, in rotationally excited internal states, and He atoms. This work is motivated by the possibility of experiments in which the molecular ions are stored and translationally cooled in an ion trap and a He buffer gas is added for deactivation of the internal rotational population, in particular at low (cryogenic) translational temperatures. We carry out an accurate representation of the forces at play from an ab initio description of the relevant potential energy surface, with the molecular ion in its ground vibrational state, and obtain the cross sections for state-changing rotationally inelastic collisions by solving the coupled channel quantum scattering equations. The presence of hyperfine and fine structure effects in both ortho- and para-H molecules is investigated and compared to the results where such a contribution is disregarded. An analysis of possible propensity rules that may predict the relative probabilities of inelastic events involving rotational state-changing is also carried out, together with the corresponding elastic cross sections from several initial rotational states. Temperature-dependent rotationally inelastic rates are then computed and discussed in terms of relative state-changing collisional efficiency under trap conditions. The results provide the essential input data for modeling different aspects of the experimental setups which can finally produce internally cold molecular ions interacting with a buffer gas.
我们呈现了 H 分子与 He 原子之间非弹性碰撞的量子计算,这些 H 分子处于旋转激发的内部状态。这项工作的动机是可能进行实验,其中分子离子在离子阱中被存储并进行平移冷却,并且添加 He 缓冲气体以失活内部旋转种群,特别是在低(低温)平移温度下。我们从相关势能面的从头算描述中进行了精确的力表示,分子离子处于其基频振动状态,并通过求解耦合通道量子散射方程获得了状态变化的旋转非弹性碰撞的截面。研究了正构和反构 H 分子中超精细和精细结构效应的存在,并将其与忽略这种贡献的结果进行了比较。还进行了可能的倾向性规则的分析,这些规则可以预测涉及旋转状态变化的非弹性事件的相对概率,以及来自几个初始旋转状态的相应弹性截面。然后根据阱条件下的相对状态变化碰撞效率计算并讨论了温度相关的旋转非弹性速率。这些结果为不同实验装置的建模提供了必要的输入数据,这些实验装置最终可以产生与缓冲气体相互作用的内部冷分子离子。