Suppr超能文献

用于预测上皮性卵巢癌生存率的代谢谱分析及新型血浆生物标志物

Metabolic profiling and novel plasma biomarkers for predicting survival in epithelial ovarian cancer.

作者信息

Xie Hongyu, Hou Yan, Cheng Jinlong, Openkova Margarita S, Xia Bairong, Wang Wenjie, Li Ang, Yang Kai, Li Junnan, Xu Huan, Yang Chunyan, Ma Libing, Li Zhenzi, Fan Xin, Li Kang, Lou Ge

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150086, China.

Department of Gynecology Oncology, the Tumor Hospital, Harbin Medical University, Harbin 150086, China.

出版信息

Oncotarget. 2017 May 9;8(19):32134-32146. doi: 10.18632/oncotarget.16739.

Abstract

Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies around the world, and patients with ovarian cancer always have an extremely poor chance of survival. Therefore, it is meaningful to develop a highly efficient model that can predict the overall survival for EOC. In order to investigate whether metabolites could be used to predict the survival of EOC, we performed a metabolic analysis of 98 plasma samples with follow-up information, based on the ultra-performance liquid chromatography mass spectrometry (UPLC/MS) systems in both positive (ESI+) and negative (ESI-) modes. Four metabolites: Kynurenine, Acetylcarnitine, PC (42:11), and LPE(22:0/0:0) were selected as potential predictive biomarkers. The AUC value of metabolite-based risk score, together with pathological stages in predicting three-year survival rate was 0.80. The discrimination performance of these four biomarkers between short-term mortality and long-term survival was excellent, with an AUC value of 0.82. In conclusion, our plasma metabolomics study presented the dysregulated metabolism related to the survival of EOC, and plasma metabolites could be utilized to predict the overall survival and discriminate the short-term mortality and long-term survival for EOC patients. These results could provide supplementary information for further study about EOC survival mechanism and guiding the appropriate clinical treatment.

摘要

上皮性卵巢癌(EOC)是全球最致命的妇科恶性肿瘤之一,卵巢癌患者的生存几率极低。因此,开发一种能够预测EOC患者总生存期的高效模型具有重要意义。为了研究代谢物是否可用于预测EOC患者的生存期,我们基于超高效液相色谱质谱联用(UPLC/MS)系统,在正离子(ESI+)和负离子(ESI-)模式下,对98份具有随访信息的血浆样本进行了代谢分析。选择了四种代谢物:犬尿氨酸、乙酰肉碱、PC(42:11)和LPE(22:0/0:0)作为潜在的预测生物标志物。基于代谢物的风险评分与病理分期在预测三年生存率方面的AUC值为0.80。这四种生物标志物在区分短期死亡率和长期生存率方面的鉴别性能极佳,AUC值为0.82。总之,我们的血浆代谢组学研究揭示了与EOC患者生存相关的代谢失调,血浆代谢物可用于预测EOC患者的总生存期,并区分短期死亡率和长期生存率。这些结果可为进一步研究EOC生存机制及指导适当的临床治疗提供补充信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02e7/5458273/c414e3357fb6/oncotarget-08-32134-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验