Suppr超能文献

碳复合纳米流体的微流控电化学阻抗谱

Microfluidic Electrochemical Impedance Spectroscopy of Carbon Composite Nanofluids.

作者信息

Jung Lee Hye, Bai Seoung-Jai, Seok Song Young

机构信息

Department of Fiber System Engineering, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701, Korea.

Department of Mechanical Engineering, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701, Korea.

出版信息

Sci Rep. 2017 Apr 7;7(1):722. doi: 10.1038/s41598-017-00760-1.

Abstract

Understanding the internal structure of composite nanofluids is critical for controlling their properties and engineering advanced composite nanofluid systems for various applications. This goal can be made possible by precise analysis with the help of a systematic robust platform. Here, we demonstrate a microfluidic device that can control the orientation of carbon nanomaterials in a suspension by applying external fields and subsequently examine the electrochemical properties of the fluids at microscale. Composite nanofluids were prepared using carbon nanomaterials, and their rheological, thermal, electrical, and morphological characteristics were examined. The analysis revealed that microfluidic electrochemical impedance spectroscopy (EIS) in the device offered more reliable in-depth information regarding the change in the microstructure of carbon composite nanofluids than typical bulk measurements. Equivalent circuit modelling was performed based on the EIS results. Furthermore, the hydrodynamics and electrostatics of the microfluidic platform were numerically investigated. We anticipate that this microfluidic approach can serve as a new strategy for designing and analyzing composite nanofluids more efficiently.

摘要

了解复合纳米流体的内部结构对于控制其性质以及设计适用于各种应用的先进复合纳米流体系统至关重要。借助系统稳健的平台进行精确分析,这一目标才有可能实现。在此,我们展示了一种微流控装置,该装置可通过施加外部场来控制悬浮液中碳纳米材料的取向,并随后在微观尺度上检测流体的电化学性质。使用碳纳米材料制备了复合纳米流体,并对其流变学、热学、电学和形态学特性进行了研究。分析表明,与典型的整体测量相比,该装置中的微流控电化学阻抗谱(EIS)能提供有关碳复合纳米流体微观结构变化的更可靠的深入信息。基于EIS结果进行了等效电路建模。此外,对微流控平台的流体动力学和静电学进行了数值研究。我们预计这种微流控方法可作为一种更有效地设计和分析复合纳米流体的新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c5c/5429664/6c2358d6c8c3/41598_2017_760_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验