Suppr超能文献

哺乳动物SWI/SNF复合物在癌症中的作用:新出现的治疗机会

Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities.

作者信息

St Pierre Roodolph, Kadoch Cigall

机构信息

Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard University, USA.

Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215; Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Curr Opin Genet Dev. 2017 Feb;42:56-67. doi: 10.1016/j.gde.2017.02.004. Epub 2017 Apr 6.

Abstract

Mammalian SWI/SNF (BAF) chromatin remodeling complexes orchestrate a diverse set of chromatin alterations which impact transcriptional output. Recent whole-exome sequencing efforts have revealed that the genes encoding subunits of mSWI/SNF complexes are mutated in over 20% of cancers, spanning a wide range of tissue types. The majority of mutations result in loss of subunit protein expression, implicating mSWI/SNF subunits as tumor suppressors. mSWI/SNF-deficient cancers remain a therapeutic challenge, owing to a lack of potent and selective agents which target complexes or unique pathway dependencies generated by mSWI/SNF subunit perturbations. Here, we review the current landscape of mechanistic insights and emerging therapeutic opportunities for human malignancies driven by mSWI/SNF complex perturbation.

摘要

哺乳动物的SWI/SNF(BAF)染色质重塑复合物协调多种染色质改变,这些改变会影响转录输出。最近的全外显子测序研究表明,编码mSWI/SNF复合物亚基的基因在超过20%的癌症中发生突变,涵盖广泛的组织类型。大多数突变导致亚基蛋白表达缺失,这表明mSWI/SNF亚基是肿瘤抑制因子。由于缺乏针对mSWI/SNF复合物或由mSWI/SNF亚基扰动产生的独特途径依赖性的有效和选择性药物,mSWI/SNF缺陷型癌症仍然是一个治疗挑战。在此,我们综述了由mSWI/SNF复合物扰动驱动的人类恶性肿瘤的当前机制见解和新兴治疗机会。

相似文献

1
Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities.
Curr Opin Genet Dev. 2017 Feb;42:56-67. doi: 10.1016/j.gde.2017.02.004. Epub 2017 Apr 6.
2
BAFfling pathologies: Alterations of BAF complexes in cancer.
Cancer Lett. 2018 Apr 10;419:266-279. doi: 10.1016/j.canlet.2018.01.046. Epub 2018 Jan 31.
3
Exploiting epigenetic vulnerabilities in solid tumors: Novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers.
Semin Cancer Biol. 2020 Apr;61:180-198. doi: 10.1016/j.semcancer.2019.09.018. Epub 2019 Sep 27.
5
Mammalian SWI/SNF Chromatin Remodeling Complexes: Emerging Mechanisms and Therapeutic Strategies.
Trends Genet. 2020 Dec;36(12):936-950. doi: 10.1016/j.tig.2020.07.011. Epub 2020 Aug 29.
7
SWI/SNF chromatin remodeling and human malignancies.
Annu Rev Pathol. 2015;10:145-71. doi: 10.1146/annurev-pathol-012414-040445. Epub 2014 Oct 27.
8
Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities.
Expert Rev Anticancer Ther. 2019 May;19(5):375-391. doi: 10.1080/14737140.2019.1605905. Epub 2019 May 13.
10
Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes.
Cell. 2018 Nov 15;175(5):1272-1288.e20. doi: 10.1016/j.cell.2018.09.032. Epub 2018 Oct 18.

引用本文的文献

2
Advances in pancreatic cancer epigenetics: From the mechanism to the clinic.
World J Gastrointest Oncol. 2025 Jul 15;17(7):106238. doi: 10.4251/wjgo.v17.i7.106238.
3
Aberrant histone modifications in pediatric brain tumors.
Front Oncol. 2025 Jun 10;15:1587157. doi: 10.3389/fonc.2025.1587157. eCollection 2025.
4
SIRT2 Regulates the SMARCB1 Loss-Driven Differentiation Block in ATRT.
Mol Cancer Res. 2025 Jun 3;23(6):515-529. doi: 10.1158/1541-7786.MCR-24-0926.
6
SMARCA4 mutations and expression in lung adenocarcinoma: prognostic significance and impact on the immunotherapy response.
FEBS Open Bio. 2024 Dec;14(12):2086-2103. doi: 10.1002/2211-5463.13899. Epub 2024 Sep 25.
7
CDK9 inhibitors for the treatment of solid tumors.
Biochem Pharmacol. 2024 Nov;229:116470. doi: 10.1016/j.bcp.2024.116470. Epub 2024 Aug 8.
9
Mammalian SWI/SNF complex activity regulates POU2F3 and constitutes a targetable dependency in small cell lung cancer.
Cancer Cell. 2024 Aug 12;42(8):1352-1369.e13. doi: 10.1016/j.ccell.2024.06.012. Epub 2024 Jul 18.
10
Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets.
Signal Transduct Target Ther. 2024 Jun 19;9(1):149. doi: 10.1038/s41392-024-01848-7.

本文引用的文献

1
ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A.
Nat Commun. 2016 Dec 13;7:13837. doi: 10.1038/ncomms13837.
2
Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states.
Nat Genet. 2017 Feb;49(2):213-222. doi: 10.1038/ng.3734. Epub 2016 Dec 12.
3
Polycomb and trithorax opposition in development and disease.
Wiley Interdiscip Rev Dev Biol. 2016 Nov;5(6):659-688. doi: 10.1002/wdev.244. Epub 2016 Sep 1.
4
A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy.
Mol Cell. 2016 Aug 4;63(3):514-25. doi: 10.1016/j.molcel.2016.06.022. Epub 2016 Jul 21.
5
Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition.
Nat Chem Biol. 2016 Sep;12(9):672-9. doi: 10.1038/nchembio.2115. Epub 2016 Jul 4.
6
Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.
Mol Cancer Ther. 2016 Jul;15(7):1472-84. doi: 10.1158/1535-7163.MCT-15-0554. Epub 2016 Jun 30.
7
LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor.
Angew Chem Weinheim Bergstr Ger. 2015 May 18;127(21):6315-6319. doi: 10.1002/ange.201501394. Epub 2015 Apr 13.
8
PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer.
Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7124-9. doi: 10.1073/pnas.1521738113. Epub 2016 Jun 6.
9
BRD7: a novel tumor suppressor gene in different cancers.
Am J Transl Res. 2016 Feb 15;8(2):742-8. eCollection 2016.
10
Identification of a Chemical Probe for Family VIII Bromodomains through Optimization of a Fragment Hit.
J Med Chem. 2016 May 26;59(10):4800-11. doi: 10.1021/acs.jmedchem.6b00012. Epub 2016 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验