Suppr超能文献

关于草酰氨在乳酸脱氢酶三元复合物中使还原型烟酰胺腺嘌呤二核苷酸荧光猝灭的机制分析。

Mechanistic Analysis of Fluorescence Quenching of Reduced Nicotinamide Adenine Dinucleotide by Oxamate in Lactate Dehydrogenase Ternary Complexes.

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, New York, NY.

出版信息

Photochem Photobiol. 2017 Oct;93(5):1193-1203. doi: 10.1111/php.12775. Epub 2017 Jun 22.

Abstract

Fluorescence of Reduced Nicotinamide Adenine Dinucleotide (NADH) is extensively employed in studies of oxidoreductases. A substantial amount of static and kinetic work has focused on the binding of pyruvate or substrate mimic oxamate to the binary complex of lactate dehydrogenase (LDH)-NADH where substantial fluorescence quenching is typically observed. However, the quenching mechanism is not well understood limiting structural interpretation. Based on time-dependent density functional theory (TDDFT) computations with cam-B3LYP functional in conjunction with the analysis of previous experimental results, we propose that bound oxamate acts as an electron acceptor in the quenching of fluorescence of NADH in the ternary complex, where a charge transfer (CT) state characterized by excitation from the highest occupied molecular orbital (HOMO) of the nicotinamide moiety of NADH to the lowest unoccupied molecular orbital (LUMO) of oxamate exists close to the locally excited (LE) state involving only the nicotinamide moiety. Efficient quenching in the encounter complex like in pig heart LDH requires that oxamate forms a salt bridge with Arg-171 and hydrogen bonds with His-195, Thr-246 and Asn-140. Further structural rearrangement and loop closure, which also brings about another hydrogen bond between oxamate and Arg-109, will increase the rate of fluorescence quenching as well.

摘要

还原型烟酰胺腺嘌呤二核苷酸(NADH)的荧光广泛应用于氧化还原酶的研究。大量的静态和动态研究集中在丙酮酸或底物类似物氨甲酰肟与乳酸脱氢酶(LDH)-NADH 的二元复合物结合上,通常观察到大量的荧光猝灭。然而,猝灭机制尚不清楚,限制了结构解释。基于时变密度泛函理论(TDDFT)计算与 cam-B3LYP 函数的结合,并结合以前的实验结果分析,我们提出结合的氨甲酰肟在三元复合物中作为 NADH 荧光猝灭的电子受体,其中存在一个电荷转移(CT)态,其特征是从 NADH 的烟酰胺部分的最高占据分子轨道(HOMO)激发到氨甲酰肟的最低未占据分子轨道(LUMO),与仅涉及烟酰胺部分的局部激发(LE)态接近。像在猪心 LDH 中那样在遭遇复合物中高效猝灭需要氨甲酰肟与 Arg-171 形成盐桥,并与 His-195、Thr-246 和 Asn-140 形成氢键。进一步的结构重排和环闭合,也会导致氨甲酰肟与 Arg-109 之间形成另一个氢键,也会增加荧光猝灭的速率。

相似文献

2
Kinetic mechanism of the endogenous lactate dehydrogenase activity of duck epsilon-crystallin.
Arch Biochem Biophys. 1991 Feb 1;284(2):285-91. doi: 10.1016/0003-9861(91)90297-v.
6
Mechanism for Fluorescence Quenching of Tryptophan by Oxamate and Pyruvate: Conjugation and Solvation-Induced Photoinduced Electron Transfer.
J Phys Chem B. 2018 Jun 28;122(25):6483-6490. doi: 10.1021/acs.jpcb.8b02433. Epub 2018 Jun 15.
7
Thermodynamic studies of binary and ternary complexes of pig heart lactate dehydrogenase.
Biochemistry. 1976 Jul 13;15(14):3052-9. doi: 10.1021/bi00659a018.
8
The approach to the Michaelis complex in lactate dehydrogenase: the substrate binding pathway.
Biophys J. 2005 Sep;89(3):2024-32. doi: 10.1529/biophysj.105.062604. Epub 2005 Jun 24.

引用本文的文献

1
A short guide on blue fluorescent proteins: limits and perspectives.
Appl Microbiol Biotechnol. 2024 Feb 14;108(1):208. doi: 10.1007/s00253-024-13012-w.
2
NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption.
Biophys J. 2023 Apr 4;122(7):1240-1253. doi: 10.1016/j.bpj.2023.02.014. Epub 2023 Feb 14.
3
Small molecule cores demonstrate non-competitive inhibition of lactate dehydrogenase.
Medchemcomm. 2018 Jul 13;9(8):1369-1376. doi: 10.1039/c8md00309b. eCollection 2018 Aug 1.
4
Mechanism for Fluorescence Quenching of Tryptophan by Oxamate and Pyruvate: Conjugation and Solvation-Induced Photoinduced Electron Transfer.
J Phys Chem B. 2018 Jun 28;122(25):6483-6490. doi: 10.1021/acs.jpcb.8b02433. Epub 2018 Jun 15.
5
Thermodynamic and Structural Adaptation Differences between the Mesophilic and Psychrophilic Lactate Dehydrogenases.
Biochemistry. 2017 Jul 18;56(28):3587-3595. doi: 10.1021/acs.biochem.7b00156. Epub 2017 Jul 5.
6
Resolution of Submillisecond Kinetics of Multiple Reaction Pathways for Lactate Dehydrogenase.
Biophys J. 2017 May 9;112(9):1852-1862. doi: 10.1016/j.bpj.2017.03.031.

本文引用的文献

2
Free energy surface of the Michaelis complex of lactate dehydrogenase: a network analysis of microsecond simulations.
J Phys Chem B. 2015 Apr 30;119(17):5430-6. doi: 10.1021/acs.jpcb.5b01840. Epub 2015 Apr 15.
3
Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
Methods Mol Biol. 2015;1264:263-70. doi: 10.1007/978-1-4939-2257-4_23.
4
The dynamical nature of enzymatic catalysis.
Acc Chem Res. 2015 Feb 17;48(2):407-13. doi: 10.1021/ar5002928. Epub 2014 Dec 24.
5
Direct evidence of catalytic heterogeneity in lactate dehydrogenase by temperature jump infrared spectroscopy.
J Phys Chem B. 2014 Sep 18;118(37):10854-62. doi: 10.1021/jp5050546. Epub 2014 Sep 4.
6
Separating NADH and NADPH fluorescence in live cells and tissues using FLIM.
Nat Commun. 2014 May 29;5:3936. doi: 10.1038/ncomms4936.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验