Pape D, Diffo Kaze A, Hoffmann A, Maas S
Orthopädische Klinik des Centre Hospitalier de Luxembourg, Akademisches Lehrkrankenhaus der Universitätskliniken des Saarlandes, 78, rue d'Eich, 1460, Luxembourg, Luxemburg.
Sports Medicine Research Laboratory, Luxembourg Institute of Health, Luxembourg, Centre Médical de la Fondation Norbert Metz, 76 rue d'Eich, 1460, Luxembourg, Luxemburg.
Orthopade. 2017 Jul;46(7):583-595. doi: 10.1007/s00132-017-3417-3.
Biomechanical characteristics of 5 tibial osteotomy plates for the treatment of medial knee joint osteoarthritis were examined. Fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy, using TomoFix™ standard, PEEKPower®, ContourLock®, TomoFix™ small stature plates, and iBalance® implants. Static compression load to failure and load-controlled cyclic fatigue failure tests were performed. All plates had sufficient stability up to 2400 N in the static compression load to failure tests. Screw breakage in the iBalance® group and opposite cortex fractures in all constructs occurred at lower loading conditions. The highest fatigue strength in terms of maximal load and number of cycles performed prior to failure was observed for the ContourLock® group followed by the iBalance® implants, the TomoFix™ standard and small stature plates. PEEKPower® had the lowest fatigue strength. All plates showed sufficient stability under static loading. Compared to the TomoFix™ and the PEEKPower® plates, the ContourLock® plate and iBalance® implant showed a higher mechanical fatigue strength during cyclic fatigue testing, suggesting that both mechanical static and fatigue strength increase with a wider proximal T‑shaped plate design together with diverging proximal screws. Mechanical strength of the bone-implant constructs decreases with a narrow T‑shaped proximal end design and converging proximal screws (TomoFix™) or a short vertical plate design (PEEKPower®). Published results indicate high fusion rates and good clinical results with the TomoFix™ plate, which is contrary to our findings. A certain amount of interfragmentary motion rather than high mechanical strength and stiffness seem to be important for bone healing which is outside the scope of this paper.
研究了5种用于治疗膝关节内侧骨关节炎的胫骨截骨板的生物力学特性。第四代胫骨骨复合材料接受内侧开放楔形高位胫骨截骨术,使用TomoFix™标准板、PEEKPower®板、ContourLock®板、TomoFix™小个子专用板和iBalance®植入物。进行了静态压缩至失效载荷试验和载荷控制循环疲劳失效试验。在静态压缩至失效载荷试验中,所有截骨板在2400 N载荷下均具有足够的稳定性。iBalance®组出现螺钉断裂,所有结构在较低载荷条件下均出现对侧皮质骨折。ContourLock®组在最大载荷和失效前循环次数方面表现出最高的疲劳强度,其次是iBalance®植入物、TomoFix™标准板和小个子专用板。PEEKPower®的疲劳强度最低。所有截骨板在静态加载下均表现出足够的稳定性。与TomoFix™和PEEKPower®截骨板相比,ContourLock®板和iBalance®植入物在循环疲劳试验中表现出更高的机械疲劳强度,这表明更宽的近端T形板设计以及发散的近端螺钉可同时提高机械静态强度和疲劳强度。骨植入物结构的机械强度会随着近端T形端设计变窄以及近端螺钉汇聚(TomoFix™)或垂直板设计较短(PEEKPower®)而降低。已发表的结果表明TomoFix™板具有较高的融合率和良好的临床效果,但这与我们的研究结果相反。一定量的骨折间微动而非高机械强度和刚度似乎对骨愈合很重要,这超出了本文的研究范围。