De-La-Llana-Calvo Álvaro, Lázaro-Galilea José Luis, Gardel-Vicente Alfredo, Rodríguez-Navarro David, Bravo-Muñoz Ignacio, Tsirigotis Georgios, Iglesias-Miguel Juan
Department of electronics, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain.
Informatics Engineering Department, Eastern Macedonia and Thrace Institute of Technology, 65404 Kavala, Greece.
Sensors (Basel). 2017 Apr 13;17(4):847. doi: 10.3390/s17040847.
In this paper, we propose a model to characterize Infrared (IR) signal reflections on any kind of surface material, together with a simplified procedure to compute the model parameters. The model works within the framework of Local Positioning Systems (LPS) based on IR signals (IR-LPS) to evaluate the behavior of transmitted signal Multipaths (MP), which are the main cause of error in IR-LPS, and makes several contributions to mitigation methods. Current methods are based on physics, optics, geometry and empirical methods, but these do not meet our requirements because of the need to apply several different restrictions and employ complex tools. We propose a simplified model based on only two reflection components, together with a method for determining the model parameters based on 12 empirical measurements that are easily performed in the real environment where the IR-LPS is being applied. Our experimental results show that the model provides a comprehensive solution to the real behavior of IR MP, yielding small errors when comparing real and modeled data (the mean error ranges from 1% to 4% depending on the environment surface materials). Other state-of-the-art methods yielded mean errors ranging from 15% to 40% in test measurements.
在本文中,我们提出了一个模型来描述红外(IR)信号在任何类型表面材料上的反射情况,同时还提出了一种简化的程序来计算模型参数。该模型在基于红外信号的局部定位系统(IR-LPS)框架内运行,以评估发射信号多径(MP)的行为,而多径是IR-LPS中误差的主要来源,并且该模型对缓解方法有多项贡献。当前的方法基于物理、光学、几何和经验方法,但由于需要应用多种不同的限制条件并使用复杂的工具,这些方法无法满足我们的需求。我们提出了一个仅基于两个反射分量的简化模型,以及一种基于12次经验测量来确定模型参数的方法,这些测量在应用IR-LPS的实际环境中很容易进行。我们的实验结果表明,该模型为IR MP的实际行为提供了一个全面的解决方案,在比较实际数据和建模数据时产生的误差较小(根据环境表面材料的不同,平均误差范围为1%至4%)。其他现有方法在测试测量中的平均误差范围为15%至40%。