Lohse Christian, Bock Andreas, Maiellaro Isabella, Hannawacker Annette, Schad Lothar R, Lohse Martin J, Bauer Wolfgang R
Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.
Computer Assisted Clinical Medicine, University of Heidelberg, Heidelberg, Germany.
PLoS One. 2017 Apr 13;12(4):e0174856. doi: 10.1371/journal.pone.0174856. eCollection 2017.
In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.
作为第二信使,环核苷酸如cAMP具有多种细胞内效应。这些复杂的任务需要对cAMP作用进行高度有组织的编排,使其在空间和时间上受到限制,而这最好通过对cAMP进行区室化来实现。大量证据表明,cAMP区室可能由cAMP降解酶(如磷酸二酯酶,PDEs)建立和维持。然而,PDEs如何编排cAMP梯度的分子和生物物理细节完全不清楚。在本文中,我们在活细胞中使用cAMP荧光共振能量转移(FRET)传感器与PDEs的融合蛋白,提供了直接的实验证据,表明单个PDE分子附近的cAMP浓度低于我们FRET传感器的检测限(<100nM)。这种cAMP梯度在粗制的细胞溶质制剂中持续存在。我们基于扩散反应方程开发了数学模型,该模型描述了单个PDE分子周围纳米区室的形成以及更复杂的空间PDE排列。这里推导的可解析方程明确确定了单个PDE或PDE复合物创建纳米区室的能力如何取决于cAMP降解速率、cAMP的扩散迁移率以及几何和拓扑参数。我们将这些通用模型应用于我们的实验数据,并确定cAMP的扩散迁移率和降解速率。从这些参数获得的结果与文献中关于游离可溶性cAMP与PDE相互作用的数据相差甚远。因此,PDE附近cAMP的受限扩散对于在细胞中创建cAMP纳米区室是必要的。