Suppr超能文献

非手性对称性破缺和正高斯模量导致了扇形胶体膜。

Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes.

作者信息

Gibaud Thomas, Kaplan C Nadir, Sharma Prerna, Zakhary Mark J, Ward Andrew, Oldenbourg Rudolf, Meyer Robert B, Kamien Randall D, Powers Thomas R, Dogic Zvonimir

机构信息

The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454.

Université de Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

出版信息

Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3376-E3384. doi: 10.1073/pnas.1617043114. Epub 2017 Apr 14.

Abstract

In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.

摘要

在存在非吸附性聚合物的情况下,单分散棒状颗粒组装成胶体膜,这些胶体膜是由排列整齐的棒组成的厚度为一个棒长的类似液体的单层膜。与无边缘的三维双层囊泡不同,胶体单层膜形成具有暴露边缘的开放结构,从而提供了研究流体片弹性的机会。由单一组分手性棒组装而成的膜形成具有均匀边缘扭曲的平盘。相比之下,由具有相反手性的棒混合物组成的膜可以具有任意一种手性的边缘扭曲。在这个极限情况下,盘状膜变得不稳定,而是形成具有扇形边缘的结构,其中两个具有相反手性的相邻叶瓣由一个尖点状点缺陷隔开。这种膜采用三维构型,尖点缺陷交替位于膜平面的上方和下方。在手性无关的状态下,尖点缺陷具有排斥相互作用,但在远离这个极限时,我们测量到有效的长程吸引结合。一个唯象模型表明,扇形膜边缘能量的增加被由于扇形边缘相关的高斯曲率导致的变形能量的相应减少所补偿,这表明胶体膜具有正的高斯模量。一个简单的排除体积论证预测了高斯曲率模量的符号和大小,这与实验测量结果一致。我们的结果为理解膜弹性、几何受挫和非手性对称性破缺之间的相互作用如何可用于将胶体膜折叠成三维形状提供了见解。

相似文献

1
Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3376-E3384. doi: 10.1073/pnas.1617043114. Epub 2017 Apr 14.
2
Self assembly of cyclic polygon shaped fluid colloidal membranes through pinning.
Soft Matter. 2018 Dec 12;14(48):9959-9966. doi: 10.1039/c8sm01503a.
3
Instability of flat disks with respect to the formation of twisted ribbons in smectic-A* monolayers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042505. doi: 10.1103/PhysRevE.87.042505. Epub 2013 Apr 22.
4
Controlling the shape and topology of two-component colloidal membranes.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2204453119. doi: 10.1073/pnas.2204453119. Epub 2022 Aug 1.
5
Colloidal membranes of hard rods: unified theory of free edge structure and twist walls.
Soft Matter. 2014 Jul 14;10(26):4700-10. doi: 10.1039/c4sm00803k.
6
Conformational switching of chiral colloidal rafts regulates raft-raft attractions and repulsions.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15792-15801. doi: 10.1073/pnas.1900615116. Epub 2019 Jul 18.
7
All twist and no bend makes raft edges splay: Spontaneous curvature of domain edges in colloidal membranes.
Sci Adv. 2020 Jul 29;6(31):eaba2331. doi: 10.1126/sciadv.aba2331. eCollection 2020 Jul.
8
Curvature instability of chiral colloidal membranes on crystallization.
Nat Commun. 2017 Oct 27;8(1):1160. doi: 10.1038/s41467-017-01441-3.
9
Imprintable membranes from incomplete chiral coalescence.
Nat Commun. 2014;5:3063. doi: 10.1038/ncomms4063.
10
Entropy driven self-assembly of nonamphiphilic colloidal membranes.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10348-53. doi: 10.1073/pnas.1000406107. Epub 2010 May 24.

引用本文的文献

1
Molecular Dynamics Simulations Reveal Octanoylated Hyaluronic Acid Enhances Liposome Stability, Stealth and Targeting.
ACS Omega. 2024 Jul 23;9(31):33833-33844. doi: 10.1021/acsomega.4c03526. eCollection 2024 Aug 6.
2
Controlling the shape and topology of two-component colloidal membranes.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2204453119. doi: 10.1073/pnas.2204453119. Epub 2022 Aug 1.
3
Multiphase Coexistences in Rod-Polymer Mixtures.
Langmuir. 2021 Oct 5;37(39):11582-11591. doi: 10.1021/acs.langmuir.1c01896. Epub 2021 Sep 23.
4
All twist and no bend makes raft edges splay: Spontaneous curvature of domain edges in colloidal membranes.
Sci Adv. 2020 Jul 29;6(31):eaba2331. doi: 10.1126/sciadv.aba2331. eCollection 2020 Jul.
5
Conformational switching of chiral colloidal rafts regulates raft-raft attractions and repulsions.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15792-15801. doi: 10.1073/pnas.1900615116. Epub 2019 Jul 18.
6
Curvature instability of chiral colloidal membranes on crystallization.
Nat Commun. 2017 Oct 27;8(1):1160. doi: 10.1038/s41467-017-01441-3.

本文引用的文献

1
Hierarchical wrinkling in a confined permeable biogel.
Sci Adv. 2015 Oct 16;1(9):e1500608. doi: 10.1126/sciadv.1500608. eCollection 2015 Oct.
2
Entropic forces stabilize diverse emergent structures in colloidal membranes.
Soft Matter. 2016 Jan 14;12(2):386-401. doi: 10.1039/c5sm02038g.
3
Chiral structures from achiral liquid crystals in cylindrical capillaries.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1837-44. doi: 10.1073/pnas.1423220112. Epub 2015 Mar 30.
4
Hierarchical organization of chiral rafts in colloidal membranes.
Nature. 2014 Sep 4;513(7516):77-80. doi: 10.1038/nature13694.
5
Colloidal membranes of hard rods: unified theory of free edge structure and twist walls.
Soft Matter. 2014 Jul 14;10(26):4700-10. doi: 10.1039/c4sm00803k.
6
Chiral symmetry breaking and surface faceting in chromonic liquid crystal droplets with giant elastic anisotropy.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1742-7. doi: 10.1073/pnas.1315121111. Epub 2014 Jan 21.
7
Imprintable membranes from incomplete chiral coalescence.
Nat Commun. 2014;5:3063. doi: 10.1038/ncomms4063.
8
Determining the bending modulus of a lipid membrane by simulating buckling.
J Chem Phys. 2013 Jun 7;138(21):214110. doi: 10.1063/1.4808077.
9
Self-assembly of 2D membranes from mixtures of hard rods and depleting polymers().
Soft Matter. 2012 Jan 1;8(3):707-714. doi: 10.1039/C1SM06201H. Epub 2011 Nov 7.
10
Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities.
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9716-20. doi: 10.1073/pnas.1201201109. Epub 2012 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验