Gibaud Thomas, Kaplan C Nadir, Sharma Prerna, Zakhary Mark J, Ward Andrew, Oldenbourg Rudolf, Meyer Robert B, Kamien Randall D, Powers Thomas R, Dogic Zvonimir
The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454.
Université de Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3376-E3384. doi: 10.1073/pnas.1617043114. Epub 2017 Apr 14.
In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.
在存在非吸附性聚合物的情况下,单分散棒状颗粒组装成胶体膜,这些胶体膜是由排列整齐的棒组成的厚度为一个棒长的类似液体的单层膜。与无边缘的三维双层囊泡不同,胶体单层膜形成具有暴露边缘的开放结构,从而提供了研究流体片弹性的机会。由单一组分手性棒组装而成的膜形成具有均匀边缘扭曲的平盘。相比之下,由具有相反手性的棒混合物组成的膜可以具有任意一种手性的边缘扭曲。在这个极限情况下,盘状膜变得不稳定,而是形成具有扇形边缘的结构,其中两个具有相反手性的相邻叶瓣由一个尖点状点缺陷隔开。这种膜采用三维构型,尖点缺陷交替位于膜平面的上方和下方。在手性无关的状态下,尖点缺陷具有排斥相互作用,但在远离这个极限时,我们测量到有效的长程吸引结合。一个唯象模型表明,扇形膜边缘能量的增加被由于扇形边缘相关的高斯曲率导致的变形能量的相应减少所补偿,这表明胶体膜具有正的高斯模量。一个简单的排除体积论证预测了高斯曲率模量的符号和大小,这与实验测量结果一致。我们的结果为理解膜弹性、几何受挫和非手性对称性破缺之间的相互作用如何可用于将胶体膜折叠成三维形状提供了见解。