Suppr超能文献

上皮-间充质微环境调控干细胞谱系选择。

Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices.

作者信息

Yang Hanseul, Adam Rene C, Ge Yejing, Hua Zhong L, Fuchs Elaine

机构信息

Robin Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA.

Robin Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.

出版信息

Cell. 2017 Apr 20;169(3):483-496.e13. doi: 10.1016/j.cell.2017.03.038. Epub 2017 Apr 13.

Abstract

Adult tissue stem cells (SCs) reside in niches, which, through intercellular contacts and signaling, influence SC behavior. Once activated, SCs typically give rise to short-lived transit-amplifying cells (TACs), which then progress to differentiate into their lineages. Here, using single-cell RNA-seq, we unearth unexpected heterogeneity among SCs and TACs of hair follicles. We trace the roots of this heterogeneity to micro-niches along epithelial-mesenchymal interfaces, where progenitors display molecular signatures reflective of spatially distinct local signals and intercellular interactions. Using lineage tracing, temporal single-cell analyses, and chromatin landscaping, we show that SC plasticity becomes restricted in a sequentially and spatially choreographed program, culminating in seven spatially arranged unilineage progenitors within TACs of mature follicles. By compartmentalizing SCs into micro-niches, tissues gain precise control over morphogenesis and regeneration: some progenitors specify lineages immediately, whereas others retain potency, preserving self-renewing features established early while progressively restricting lineages as they experience dynamic changes in microenvironment.

摘要

成体组织干细胞(SCs)存在于特定微环境中,这些微环境通过细胞间接触和信号传导影响干细胞的行为。一旦被激活,干细胞通常会产生短命的过渡放大细胞(TACs),然后这些细胞会进一步分化为它们各自的谱系。在这里,我们使用单细胞RNA测序技术,揭示了毛囊干细胞和过渡放大细胞中意想不到的异质性。我们将这种异质性的根源追溯到上皮-间充质界面的微环境,在那里祖细胞表现出反映空间上不同局部信号和细胞间相互作用的分子特征。通过谱系追踪、时间单细胞分析和染色质景观分析,我们表明干细胞的可塑性在一个顺序和空间编排的程序中受到限制,最终在成熟毛囊的过渡放大细胞中形成七个空间排列的单谱系祖细胞。通过将干细胞分隔到微环境中,组织获得了对形态发生和再生的精确控制:一些祖细胞立即指定谱系,而另一些则保留潜能,在经历微环境动态变化时,在保持早期建立的自我更新特征的同时逐渐限制谱系。

相似文献

1
Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices.
Cell. 2017 Apr 20;169(3):483-496.e13. doi: 10.1016/j.cell.2017.03.038. Epub 2017 Apr 13.
2
Temporal Layering of Signaling Effectors Drives Chromatin Remodeling during Hair Follicle Stem Cell Lineage Progression.
Cell Stem Cell. 2018 Mar 1;22(3):398-413.e7. doi: 10.1016/j.stem.2017.12.004. Epub 2018 Jan 11.
3
Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice.
Nature. 2015 May 21;521(7552):366-70. doi: 10.1038/nature14289. Epub 2015 Mar 18.
4
Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.
Cell Rep. 2016 Mar 29;14(12):3001-18. doi: 10.1016/j.celrep.2016.02.078. Epub 2016 Mar 19.
5
Transit-amplifying cells orchestrate stem cell activity and tissue regeneration.
Cell. 2014 May 8;157(4):935-49. doi: 10.1016/j.cell.2014.02.057.
8
FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential.
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):E1506-15. doi: 10.1073/pnas.1601569113. Epub 2016 Feb 24.
9
WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation.
Cell. 2016 Jan 14;164(1-2):156-169. doi: 10.1016/j.cell.2015.11.058.
10
Hair follicle stem cells: walking the maze.
Eur J Cell Biol. 2007 Jul;86(7):355-76. doi: 10.1016/j.ejcb.2007.03.006. Epub 2007 Jun 18.

引用本文的文献

1
CD133 defines hair-inductive cells in the dermal papilla.
Sci Rep. 2025 Jul 1;15(1):22430. doi: 10.1038/s41598-025-05487-y.
3
Recent Advances in Stem Cells of Corneal Epithelia.
Invest Ophthalmol Vis Sci. 2025 May 1;66(5):45. doi: 10.1167/iovs.66.5.45.
4
Ocelli: an open-source tool for the analysis and visualization of developmental multimodal single-cell data.
NAR Genom Bioinform. 2025 Apr 10;7(2):lqaf040. doi: 10.1093/nargab/lqaf040. eCollection 2025 Jun.
5
CD133-positive dermal papilla cells are a major driver in promoting hair follicle formation.
Res Sq. 2025 Apr 23:rs.3.rs-5054470. doi: 10.21203/rs.3.rs-5054470/v1.
6
Targeted self-assembled anti-NFκB AuNCs-aptamer nanoplatform for precise theranostics via tailored follicle regeneration.
Mater Today Bio. 2025 Apr 17;32:101774. doi: 10.1016/j.mtbio.2025.101774. eCollection 2025 Jun.
7
Cyclic renewal in three ectodermal appendage follicles: Hairs, feathers and teeth.
Dev Biol. 2025 Jun;522:76-90. doi: 10.1016/j.ydbio.2025.03.009. Epub 2025 Mar 18.
8
Crosstalk Signaling Between the Epithelial and Non-Epithelial Compartments of the Mouse Inner Ear.
J Assoc Res Otolaryngol. 2025 Apr;26(2):127-145. doi: 10.1007/s10162-025-00980-7. Epub 2025 Mar 13.
9
Shaping epithelial tissues by stem cell mechanics in development and cancer.
Nat Rev Mol Cell Biol. 2025 Jan 29. doi: 10.1038/s41580-024-00821-0.
10
Evolution of long scalp hair in humans.
Br J Dermatol. 2025 Mar 18;192(4):574-584. doi: 10.1093/bjd/ljae456.

本文引用的文献

1
Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells.
Cell. 2016 Nov 17;167(5):1310-1322.e17. doi: 10.1016/j.cell.2016.10.045.
2
Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity.
Cell Syst. 2016 Sep 28;3(3):221-237.e9. doi: 10.1016/j.cels.2016.08.010. Epub 2016 Sep 15.
3
Tracing haematopoietic stem cell formation at single-cell resolution.
Nature. 2016 May 26;533(7604):487-92. doi: 10.1038/nature17997. Epub 2016 May 18.
4
Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters.
Cell Stem Cell. 2016 Feb 4;18(2):203-13. doi: 10.1016/j.stem.2016.01.001. Epub 2016 Jan 28.
5
WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation.
Cell. 2016 Jan 14;164(1-2):156-169. doi: 10.1016/j.cell.2015.11.058.
6
The Branching Point in Erythro-Myeloid Differentiation.
Cell. 2015 Dec 17;163(7):1655-62. doi: 10.1016/j.cell.2015.11.059.
7
Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors.
Cell. 2015 Dec 17;163(7):1663-77. doi: 10.1016/j.cell.2015.11.013. Epub 2015 Nov 25.
8
Computational assignment of cell-cycle stage from single-cell transcriptome data.
Methods. 2015 Sep 1;85:54-61. doi: 10.1016/j.ymeth.2015.06.021. Epub 2015 Jul 2.
9
Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations.
Cell Stem Cell. 2015 Jun 4;16(6):712-24. doi: 10.1016/j.stem.2015.04.004. Epub 2015 May 21.
10
Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice.
Nature. 2015 May 21;521(7552):366-70. doi: 10.1038/nature14289. Epub 2015 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验