Brandão Rodolfo, Miranda José A
Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901 Brazil.
Phys Rev E. 2017 Mar;95(3-1):033104. doi: 10.1103/PhysRevE.95.033104. Epub 2017 Mar 8.
The usual viscous fingering instability arises when a fluid displaces another of higher viscosity in a flat Hele-Shaw cell, under sufficiently large capillary number conditions. In this traditional framing, the reverse flow case (more viscous fluid displacing a less viscous one) and the viscosity-matched situation (fluids of equal viscosities) are stable. We revisit this classical fluid dynamic problem, now considering flow in a nonflat Hele-Shaw cell. For a specific nonflat environment, we show that both the reverse and the viscosity-matched flows can become unstable, even at low capillary number. This peculiar fluid fingering instability is driven by the combined action of capillary effects and geometric properties of the nonflat Hele-Shaw cell. Our theoretical results indicate that the Hele-Shaw cell geometry significantly impacts the linear stability and nonlinear pattern-forming dynamics of the system. This suggests that the geometry of the medium plays an important role in favoring the occurrence of fingering patterns in nonflat, confined fluid flows.
在足够大的毛细管数条件下,当一种流体在扁平的赫勒肖盒中驱替另一种粘度更高的流体时,通常会出现粘性指进不稳定性。在这种传统框架下,逆流情况(粘度更高的流体驱替粘度较低的流体)和粘度匹配情况(粘度相等的流体)是稳定的。我们重新审视这个经典的流体动力学问题,现在考虑在非扁平赫勒肖盒中的流动。对于特定的非扁平环境,我们表明即使在低毛细管数下,逆流和粘度匹配流动都可能变得不稳定。这种特殊的流体指进不稳定性是由毛细管效应和非扁平赫勒肖盒的几何特性共同作用驱动的。我们的理论结果表明,赫勒肖盒的几何形状对系统的线性稳定性和非线性图案形成动力学有显著影响。这表明介质的几何形状在促进非扁平、受限流体流动中指进图案的出现方面起着重要作用。