Suppr超能文献

被动标量:螺旋和非螺旋旋转湍流中的混合、扩散与间歇性

Passive scalars: Mixing, diffusion, and intermittency in helical and nonhelical rotating turbulence.

作者信息

Imazio P Rodriguez, Mininni P D

机构信息

Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Cuidad Universitaria, Buenos Aires 1428, Argentina.

Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, 24 rue Lhomond, 75005 Paris, France.

出版信息

Phys Rev E. 2017 Mar;95(3-1):033103. doi: 10.1103/PhysRevE.95.033103. Epub 2017 Mar 6.

Abstract

We use direct numerical simulations to compute structure functions, scaling exponents, probability density functions, and effective transport coefficients of passive scalars in turbulent rotating helical and nonhelical flows. We show that helicity affects the inertial range scaling of the velocity and of the passive scalar when rotation is present, with a spectral law consistent with ∼k_{⊥}^{-1.4} for the passive scalar variance spectrum. This scaling law is consistent with a phenomenological argument [P. Rodriguez Imazio and P. D. Mininni, Phys. Rev. E 83, 066309 (2011)PLEEE81539-375510.1103/PhysRevE.83.066309] for rotating nonhelical flows, which follows directly from Kolmogorov-Obukhov scaling and states that if energy follows a E(k)∼k^{-n} law, then the passive scalar variance follows a law V(k)∼k^{-n_{θ}} with n_{θ}=(5-n)/2. With the second-order scaling exponent obtained from this law, and using the Kraichnan model, we obtain anomalous scaling exponents for the passive scalar that are in good agreement with the numerical results. Multifractal intermittency models are also considered. Intermittency of the passive scalar is stronger than in the nonhelical rotating case, a result that is also confirmed by stronger non-Gaussian tails in the probability density functions of field increments. Finally, Fick's law is used to compute the effective diffusion coefficients in the directions parallel and perpendicular to rotation. Calculations indicate that horizontal diffusion decreases in the presence of helicity in rotating flows, while vertical diffusion increases. A simple mean field argument explains this behavior in terms of the amplitude of velocity fluctuations.

摘要

我们使用直接数值模拟来计算湍流旋转螺旋流和非螺旋流中被动标量的结构函数、标度指数、概率密度函数和有效输运系数。我们表明,当存在旋转时,螺旋度会影响速度和被动标量的惯性范围标度,被动标量方差谱的谱律与(\sim k_{\perp}^{-1.4})一致。这个标度律与旋转非螺旋流的一个唯象论证[P. Rodriguez Imazio和P. D. Mininni,《物理评论E》83,066309(2011年)]一致,该论证直接源于柯尔莫哥洛夫 - 奥布霍夫标度,并指出如果能量遵循(E(k)\sim k^{-n})律,那么被动标量方差遵循(V(k)\sim k^{-n_{\theta}})律,其中(n_{\theta}=(5 - n)/2)。利用从该定律获得的二阶标度指数,并使用克莱奇南模型,我们得到了与数值结果高度吻合的被动标量的反常标度指数。还考虑了多重分形间歇性模型。被动标量的间歇性比非螺旋旋转情况更强,这一结果也由场增量概率密度函数中更强的非高斯尾部所证实。最后,使用菲克定律来计算平行和垂直于旋转方向的有效扩散系数。计算表明,在旋转流中存在螺旋度时,水平扩散减小,而垂直扩散增加。一个简单的平均场论证根据速度波动的幅度解释了这种行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验