Garg Alka B, Errandonea Daniel, Popescu Catalin, Martinez-García Domingo, Pellicer-Porres Julio, Rodríguez-Hernández Placida, Muñoz Alfonso, Botella Pablo, Cuenca-Gotor Vanesa P, Sans Juan Angel
High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre , Mumbai 400085, India.
Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia , Edificio de Investigación, C/Dr. Moliner 50, Burjassot, Valencia 46100, Spain.
Inorg Chem. 2017 May 1;56(9):5420-5430. doi: 10.1021/acs.inorgchem.7b00437. Epub 2017 Apr 19.
The high-pressure behavior of technologically important visible-light photocatalytic semiconductor InNbO, adopting a monoclinic wolframite-type structure at ambient conditions, was investigated using synchrotron-based X-ray diffraction, Raman spectroscopic measurements, and first-principles calculations. The experimental results indicate the occurrence of a pressure-induced isostructural phase transition in the studied compound beyond 10.8 GPa. The large volume collapse associated with the phase transition and the coexistence of two phases observed over a wide range of pressure shows the nature of transition to be first-order. There is an increase in the oxygen anion coordination number around In and Nb cations from six to eight at the phase transition. The ambient-pressure phase has been recovered on pressure release. The experimental pressure-volume data when fitted to a Birch-Murnaghan equation of states yields the value of ambient pressure bulk modulus as 179(2) and 231(4) GPa for the low- and high-pressure phases, respectively. The pressure dependence of the Raman mode frequencies and Grüneisen parameters was determined for both phases by experimental and theoretical methods. The same information is obtained for the infrared modes from first-principles calculations. Results from theoretical calculations corroborate the experimental findings. They also provide information on the compressibility of interatomic bonds, which is correlated with the macroscopic properties of InNbO.
采用基于同步加速器的X射线衍射、拉曼光谱测量和第一性原理计算方法,研究了在环境条件下具有单斜钨铁矿型结构的重要技术可见光光催化半导体InNbO的高压行为。实验结果表明,在所研究的化合物中,超过10.8 GPa时发生了压力诱导的同结构相变。与相变相关的大体积坍塌以及在很宽的压力范围内观察到的两相共存表明该转变为一级相变。在相变时,In和Nb阳离子周围的氧阴离子配位数从6增加到8。压力释放后,常压相得以恢复。将实验压力-体积数据拟合到Birch-Murnaghan状态方程时,得到的常压体积模量值分别为低压相179(2) GPa和高压相231(4) GPa。通过实验和理论方法确定了两相拉曼模式频率和格林艾森参数的压力依赖性。从第一性原理计算中获得了红外模式的相同信息。理论计算结果证实了实验发现。它们还提供了关于原子间键压缩性的信息,这与InNbO的宏观性质相关。