Suppr超能文献

张力激活通道在……渗透适应性机制中的作用

Tension-activated channels in the mechanism of osmotic fitness in .

作者信息

Çetiner Uğur, Rowe Ian, Schams Anthony, Mayhew Christina, Rubin Deanna, Anishkin Andriy, Sukharev Sergei

机构信息

Department of Biology, University of Maryland, College Park, MD 20742.

Institute of Physical Science and Technology, University of Maryland, College Park, MD 20742.

出版信息

J Gen Physiol. 2017 May 1;149(5):595-609. doi: 10.1085/jgp.201611699. Epub 2017 Apr 19.

Abstract

(PA) is an opportunistic pathogen with an exceptional ability to adapt to a range of environments. Part of its adaptive potential is the ability to survive drastic osmolarity changes. Upon a sudden dilution of external medium, such as during exposure to rain, bacteria evade mechanical rupture by engaging tension-activated channels that act as osmolyte release valves. In this study, we compare fast osmotic permeability responses in suspensions of wild-type PA and (EC) strains in stopped-flow experiments and provide electrophysiological descriptions of osmotic-release channels in PA. Using osmotic dilution experiments, we first show that PA tolerates a broader range of shocks than EC. We record the kinetics of cell equilibration reported by light scattering responses to osmotic up- and down-shocks. PA exhibits a lower water permeability and faster osmolyte release rates during large osmotic dilutions than EC, which correlates with better survival. To directly characterize the PA tension-activated channels, we generate giant spheroplasts from this microorganism and record current responses in excised patches. Unlike EC, which relies primarily on two types of channels, EcMscS and EcMscL, to generate a distinctive two-wave pressure ramp response, PA exhibits a more gradual response that is dominated by MscL-type channels. Genome analysis, cloning, and expression reveal that PA possesses one MscL-type (PaMscL) and two MscS-type (PaMscS-1 and 2) proteins. In EC spheroplasts, both PaMscS channels exhibit a slightly earlier activation by pressure compared with EcMscS. Unitary currents reveal that PaMscS-2 has a smaller conductance, higher anionic preference, stronger inactivation, and slower recovery compared with PaMscS-1. We conclude that PA relies on MscL as the major valve defining a high rate of osmolyte release sufficient to curb osmotic swelling under extreme shocks, but it still requires MscS-type channels with a strong propensity to inactivation to properly terminate massive permeability response.

摘要

铜绿假单胞菌(PA)是一种机会致病菌,具有适应多种环境的非凡能力。其适应潜力的一部分是能够在剧烈的渗透压变化中存活。在外部培养基突然稀释时,例如在淋雨期间,细菌通过激活充当渗透溶质释放阀的张力激活通道来避免机械破裂。在本研究中,我们在停流实验中比较了野生型PA和大肠杆菌(EC)菌株悬浮液中的快速渗透通透性反应,并提供了PA中渗透释放通道的电生理描述。通过渗透稀释实验,我们首先表明PA比EC能耐受更广泛的冲击。我们记录了光散射对渗透压上升和下降冲击的反应所报告的细胞平衡动力学。在大渗透压稀释过程中,PA表现出比EC更低的水通透性和更快的渗透溶质释放速率,这与更好的存活率相关。为了直接表征PA的张力激活通道,我们从这种微生物中生成了巨大原生质球,并记录了切除膜片上的电流反应。与主要依赖两种类型的通道(EcMscS和EcMscL)来产生独特的两波压力斜坡反应的EC不同,PA表现出更渐进的反应,该反应以MscL型通道为主导。基因组分析、克隆和表达表明PA拥有一种MscL型(PaMscL)和两种MscS型(PaMscS - 1和2)蛋白。在EC原生质球中,与EcMscS相比,两种PaMscS通道在压力作用下均表现出稍早的激活。单通道电流显示,与PaMscS - 1相比,PaMscS - 2具有更小的电导、更高的阴离子偏好性、更强的失活和更慢的恢复。我们得出结论,PA依赖MscL作为主要阀门来定义高渗透溶质释放速率,足以在极端冲击下抑制渗透性肿胀,但它仍然需要具有强烈失活倾向的MscS型通道来正确终止大规模通透性反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8a5/5412531/e1007935f397/JGP_201611699_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验