Pohl Darius, Schneider Sebastian, Zeiger Paul, Rusz Ján, Tiemeijer Peter, Lazar Sorin, Nielsch Kornelius, Rellinghaus Bernd
IFW Dresden, Institute for Metallic Materials, Helmholtzstrasse 20, D-01069, Dresden, Germany.
TU Dresden, Institute for Solid State Physics, D-01062, Dresden, Germany.
Sci Rep. 2017 Apr 19;7(1):934. doi: 10.1038/s41598-017-01077-9.
The decreasing size of modern functional magnetic materials and devices cause a steadily increasing demand for high resolution quantitative magnetic characterization. Transmission electron microscopy (TEM) based measurements of the electron energy-loss magnetic chiral dichroism (EMCD) may serve as the needed experimental tool. To this end, we present a reliable and robust electron-optical setup that generates and controls user-selectable single state electron vortex beams with defined orbital angular momenta. Our set-up is based on a standard high-resolution scanning TEM with probe aberration corrector, to which we added a vortex generating fork aperture and a miniaturized aperture for vortex selection. We demonstrate that atom size probes can be formed from these electron vortices and that they can be used for atomic resolution structural and spectroscopic imaging - both of which are prerequisites for future atomic EMCD investigations.
现代功能磁性材料和器件尺寸的减小,导致对高分辨率定量磁特性表征的需求不断增加。基于透射电子显微镜(TEM)的电子能量损失磁圆二色性(EMCD)测量可作为所需的实验工具。为此,我们提出了一种可靠且稳健的电子光学装置,该装置可产生并控制具有确定轨道角动量的用户可选择的单态电子涡旋束。我们的装置基于一台配备探针像差校正器的标准高分辨率扫描透射电子显微镜,在此基础上我们添加了一个涡旋产生叉形孔径和一个用于涡旋选择的小型化孔径。我们证明了可以由这些电子涡旋形成原子尺寸的探针,并且它们可用于原子分辨率的结构和光谱成像——这两者都是未来原子EMCD研究的先决条件。