Materials Science and Technology Division, Naval Research Laboratory, 4555 Overlook Avenue, Washington DC, 20375, USA.
Acoustics Division, Naval Research Laboratory, 4555 Overlook Avenue, Washington DC, 20375, USA.
ChemSusChem. 2017 Jun 9;10(11):2408-2415. doi: 10.1002/cssc.201700412. Epub 2017 May 10.
The high concentration of CO bound in seawater represents a significant opportunity to extract and use this CO as a C feedstock for synthetic fuels. Using an existing process, CO and H can be concurrently extracted from seawater and then catalytically reacted to produce synthetic fuel. Hydrogenating CO directly into liquid hydrocarbons is exceptionally difficult, but by first identifying a catalyst for selective CO production through the reverse water-gas shift (RWGS) reaction, CO can then be hydrogenated to fuel through Fischer-Tropsch (FT) synthesis. Results of this study demonstrate that potassium-promoted molybdenum carbide supported on γ-Al O (K-Mo C/γ-Al O ) is a low-cost, stable, and highly selective catalyst for RWGS over a wide range of conversions. These findings are supported by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations.
海水中高浓度的 CO 代表了一个重要的机会,可以提取并将其用作合成燃料的 C 原料。利用现有的工艺,可以从海水中同时提取 CO 和 H,然后进行催化反应以生产合成燃料。直接将 CO 氢化生成液态烃类非常困难,但通过首先确定一种催化剂,通过逆水煤气变换(RWGS)反应选择性地生成 CO,然后可以通过费托(FT)合成将 CO 氢化生成燃料。这项研究的结果表明,在广泛的转化率范围内,负载在 γ-Al O 上的钾促进的碳化钼(K-Mo C/γ-Al O )是一种用于 RWGS 的低成本、稳定且高选择性的催化剂。X 射线衍射、带有能量色散 X 射线光谱的扫描电子显微镜、X 射线光电子能谱和密度泛函理论计算支持这些发现。