Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen, CH-5232, Switzerland.
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland.
Plant Cell Environ. 2017 Aug;40(8):1658-1670. doi: 10.1111/pce.12974. Epub 2017 Jun 2.
Almost no δ O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ O relationship between leaf water and cellulose. We measured δ O values of bulk leaf water (δ O ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε ) of more than 27‰ relative to δ O , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ O and δ O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε = 25.1‰). Interestingly, damping factor p p , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ O but not if modelled directly from δ O of individual carbohydrates. We conclude that δ O is not always a good substitute for δ O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants.
几乎没有δ¹⁸O 值可用于叶碳水化合物,这使得我们对叶片水分和纤维素之间的δ¹⁸O 关系的理解存在空白。我们测量了草本和木本植物的叶水总δ¹⁸O(δ¹⁸O)和个别叶碳水化合物(如果糖、葡萄糖和蔗糖)的δ¹⁸O 值,以及草本植物的叶纤维素的δ¹⁸O 值。这些草在两种相对湿度(rH)条件下生长。与所有物种的己糖相比,蔗糖通常表现为δ¹⁸O 富集,相对于δ¹⁸O 的明显生物合成分馏因子(ε)超过 27‰,这可能是由同位素叶水和蔗糖合成梯度解释的。草的碳水化合物和纤维素的δ¹⁸O 值和δ¹⁸O 值密切相关,表明碳水化合物中的叶片水分信号传递到纤维素(ε=25.1‰)。有趣的是,如果根据 δ¹⁸O 而不是根据个别碳水化合物的 δ¹⁸O 值来模拟,阻尼因子 p p 反映了纤维素合成过程中与较富集水的氧同位素交换,那么它会对 rH 条件做出响应。我们得出的结论是,由于同位素叶水梯度,δ¹⁸O 并不总是合成水的 δ¹⁸O 的良好替代品。因此,个别碳水化合物的化合物特异性 δ¹⁸O 分析有助于更好地约束植物光合作用后同位素分馏过程。